
2007 Autumn semester Pattern Information Processing
Topic 1. Sampling and digital processing of images

Session 3. (2) Fourier transformation and sampling theorem

The Fourier transformation and the sampling the-

orem will be explained in this session. The Fourier

transformation is a general framework to define a

conversion of a function, for example an image or a

sound signal, to a continous set of frequency compo-

nents. This is an expansion of the Fourier series ex-

pansion for a periodic function to the case of a func-

tion with the infinite period.

To convert a continuous distribution of brightness

to a digital image, it is necessary to extract the bright-

ness at each point arranged regularly at a period. This

operation is called sampling. The original continu-

ous distribution of brightness can be reconstructed if

the interval is sufficiently small. The sampling the-

orem gives the maximum period for lossless recon-

struction.

Fourier transformation

It was explained in the previous session that a peri-

odic function of period L is decomposed to a Fourier

series, which is the summation of countably infinite

number of sinusoidal functions. How is the case

where f (x) is not periodic? It is considered as the

case where the period L tends to the infinity. When

L tends to the infinity, the intervals between the ba-

sic periods of the waves, L/2, L/3, L/4, . . . , L/n, . . . ,

become smaller and smaller, and finally the intervals

disappear. It indicates that the original function can-

not be expressed by a summation such as Eq. (3) in

the previous session, since the intervals are not dis-

crete but continuous and the waves are not countable.

In this case, the Fourier series is not regarded as an

arrangement of peaks but a continuous function com-

posed by connecting adjacent peaks. However, the

extraction operation of a peak explained in Eq. (4) in

the previous session can be considered similarly. The

operation for a frequency ν is denoted as,

F(ν) =
∫ ∞
−∞

f (x) exp(−i2πνx)dx. (1)

The height of the peak, F(ν) is called the component

of frequency ν. Regarding these components, which

are continuously connected as explained above, as a

function of ν, we can consider Eq. 1 to be a trans-

formation from a function f (x) to a function F(ν).

This is the definition of Fourier transformation. and

applying In two dimensional case, it is expressed as

F(νx, νy) =
∫∫ ∞
−∞

f (x, y) exp{−i2π(νxx + νyy)}dxdy.

(2)

The original (x, y) plane is called real domain, and

(νx, νy) plane yielded by Fourier transformation is

called frequency domain.

The operation to obtain the real domain function

f (x) from the frequency domain function F(ν) is

called inverse Fourier transformation. As explained

in the previous session, since the component of fre-

quency ν in the frequency domain corresponds to the

coefficient of exp(i2πνx), the inverse Fourier trans-

formation is defined as follows 1:

FT−1[F(ν)](x) =
∫ ∞
−∞

F(ν) exp(i2πνx)dν = f (x).

(3)

Sampling and sampling theorem

Assume an image as a one-dimensional function

for simplicity. Let the brightness at position x, i.

e. pixel value of pixel at x, be f (x). Extracting the

brightness at points arranged regularly at a period is

called sampling, as shown in Fig. 1.

Let us suppose a function composed by infinite

numbers of Dirac’s delta functions arranged at an in-

terval T, as shown in Fig. 2. This is called comb
1The right side of this equation is divided by N for normalization in some textbooks. This is explained later in the section of the

unitary transformation.
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function, defined as follows:

combT (x) =
∞∑

n=−∞
δ(x − nT ). (4)

A sampled digital image from f (x), denoted fT (x),

is expressed as f (x) multiplied by the comb function

combT (x), i. e.

fT (x) = f (x)combT (x). (5)

Now we consider the Fourier transformation of fT (x)

to find the frequency range of sampled image fT (x).

We apply the following theorem on the Fourier trans-

formation of the product of two functions:

FT [ f (x)g(x)](ν) = FT [ f (x)](ν) ∗ FT [g(x)](ν) (6)

where FT [ f (x)] denotes the Fourier transform of

f (x), and the symbol ∗ denotes convolution, defined

as follows:

f (t) ∗ g(t) =
∫ ∞
−∞

f (y)g(t − y)dy. (7)

The theorem of Eq. (6) states that the Fourier trans-

form of the product of two functions is equal to the

convolution of the Fourier transforms of the two func-

tions (see Appendix 1 for the proof).

We get from this theorem that the Fourier transfor-

mation of Eq. (5) is

FT [ fT (x)](ν) = FT [ f (x)](ν) ∗ FT [combT (x)](ν).

(8)

The first term of the right side of Eq. (8) is the Fourier

transform of the original function f (x). The second

term is the Fourier transform of comb function. We

get from a theorem that

FT [combT (x)](ν) =
1
T

comb1/T (ν). (9)

(see Appendix 2 for the outline of the proof.) This re-

lationship states that the Fourier transform of a comb

function is also a comb function, and the period of the

original comb function and that of the transformed

comb function in the frequency domain are in invert

proportion. Consequently, we get

FT [ fT (x)](ν) =
1
T
{FT [ f (x)](ν)∗comb1/T (ν)}. (10)

What is “convolution with comb function?” We ex-

plain it by starting from “convolution with delta func-

tion.” From Eq. (7), we get

f (t) ∗ δ(t) =
∫ ∞
−∞

f (y)δ(t − y)dy. (11)

At the right side of Eq. (11), y varies from −∞ to ∞.

Since δ(t − y) = 0 except t = y, the contribution of

δ(t − y) to the integral is zero in this case . Thus we

get

f (t) ∗ δ(t) =
∫ ∞
−∞

f (y)δ(t − y)dy

=

∫ ∞
−∞

f (y)δ(t − t)dy

= f (t)
∫ ∞
−∞
δ(0)dy = f (t), (12)

i. e. the convolution of a function and the delta func-

tion is equal to the original function itself.

brightness f(x)

position x

f(x)

x

sampling

Fig. 1: Sampling.
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Fig. 2: Comb function.

Since a comb function is a sequence of the delta

functions arrraged at a constant period, the convolu-

tion of a function and a comb function is an arrange-

ment of shifted duplications of the original func-

tion at a constant period. Consequently, Eq. (10)

states that the Fourier transform of fT (x), which is

the sampled version of fT (x) at period T , is an in-

finite sequence of shifted duplications of FT [ fT (x)],

the Fourier transform of the original f (x), arranged

at interval 1/T. This relationship is illustrated in Fig.

3. Here νc is called cutoff frequency and indicates

the highest frequency contained in the original f (x).

As explained in the previous session, if f (x) is a

real function, the components of FT [ f (x)] lie in the

range between −νc and νc, since FT [ f (x)](−ν) � 0 if

FT [ f (x)](ν) � 0.

If the period of comb function in the frequency do-

main is sufficiently large, as shown in Fig. 4(a), ad-

jacent FT [ f (x)]’s do not overlap. In this case, the

Fourier transform of the original function, FT [ f (x)],

can be separated and extracted, i. e. no information

of the brightness distribution of the original image is

lost by the sampling. However, if the interval of the

comb functions in the frequency domain is small, as

shown in Fig. 4(b), adjacent FT [ f (x)]’s overlap. In

this case, the original FT [ f (x)] cannot be separated

and a faulty function will be extracted. This effect is

called aliasing.

Since the support of FT [ f (x)] is in the range be-

tween −νc and νc, the period has to be at least 2νc for

avoiding overlaps of FT [ f (x)]’s. Since T is a sam-

pling period, 1/T denotes the number of samples per

unit length, i. e. sampling rate. Consequently, the

original brightness distribution can be reconstructed

by a sampled digital image if the sampling rate is

more than twice the maximum frequency contained

in the original distribution. This theorem is called

sampling theorem.

For example, the music compact disc is recorded

digitally at sampling rate 44.1kHz, i. e. the signal is

sampled 44100 times per second. Thus the maximum

frequency that the music CD can correctly reproduce

is 22.05kHz. It means that the filtering for cutting

off the frequency range higher than 22.05kHz at the

recording process is required for avoiding an aliasing.

Appendix 1. Convolution and Fourier transfor-
mation

Let F and G be Fourier transforms of real-domain

functions f and g, respectively. We get from Eq. (3),

the definition of the inverse Fourier transformation,

that

f (x)g(x)

=

∫ ∞
−∞

F(ν) exp(i2πνx)dν
∫ ∞
−∞

G(μ) exp(i2πμx)dμ

=

∫ ∞
−∞

∫ ∞
−∞

F(ν)G(ν)dν exp(i2π(ν + μ)x)dμ. (13)
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Fig. 3: Sampling and Fourier transformation.

Applying the variable conversion ν + μ = ξ, we get

f (x)g(x) =
∫ ∞
−∞

∫ ∞
−∞

F(ν)G(ξ − ν)dν exp(i2πξx)dξ

=

∫ ∞
−∞

∫ ∞
−∞

[F ∗G](ξ) exp(i2πξx)dξ

= FT−1[F ∗G](x) (14)

Equation (6) is obtained by the inverse transforma-

tion of Eq. (14).

Appendix 2. Fourier transformation of comb
function

From the definition of combT (x) by Eq. (4), we

get that combT (x) is a periodic function of period T .

A periodic function of period T is expressed by a se-

ries of sinusoidal functions whose frequency is n/T

(n : integer), i. e.

combT (x) =
∞∑

n=−∞
an exp(i2π

n
T

x). (15)

The coefficient an at the frequency n/T is obtained by

multiplication of exp(−i2π n
T x) and integration, be-

cause of the property of the orthogonal function sys-

tem. Since it is a periodic function of period T , the

range of integration is not (−∞,∞) but [−T/2,T/2].

Multiplying 1/T for normalization, we get

an =
1
T

∫ T/2

−T/2
combT (x) exp(−i2π

n
T

x)dx

=
1
T

∫ T/2

−T/2
δ(x) exp(−i2π

n
T

x)dx

=
1
T

exp(−i2π
n
T
· 0) =

1
T
, (16)

and then we get

combT (x) =
1
T

∞∑
n=−∞

exp(i2π
n
T

x). (17)

Thus its Fourier transform is as follows:

FT [combT (x)](ν) =
1
T

∞∑
n=−∞

FT [exp(i2π
n
T

x)](ν).

(18)

As explained in the previous session, since we get

peaks at ν = n/T in the Fourier transform of

exp(i2π n
T x), we get from Eq. (18) that

FT [combT (x)](ν) =
1
T

∞∑
n=−∞

δ(ν − n
T

)

=
1
T

comb1/T (ν). (19)
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Fig. 4: Sampling theorem.
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