
2007 Autumn semester Pattern Information Processing
Topic 2. Image compression by orthogonal transformation

Session 5. (1) Principal component analysis and Karhunen-Loève
transformation

Topic 2 of this course explains the image compres-
sion by orthogonal transformations. This method ex-
presses an image by a weighted summation of “some-
thing,” and reduce the data amount by omitting some
terms in the summation. Successful data amount
reduction without significant degradation of image
quality should separate the terms corresponding to
“visually more important components” and those cor-
responding to “visually less important components”
in the weighted summation, and remove the latter.

This topic consists of the following three sessions;
1) Derivation of the statistically optimal weighted
summation by the principal component analysis and
Karhunen-Loève transformation, 2) Introduction of
unitary transformations of matrices for general for-
malization of the KL transformation and introduction
of basis images as the terms in the weighted summa-
tion, and 3) image compression using cosine transfor-
mation and JPEG method as an empirically optimal
formalization of the weighted summation.

Visually “more important components” and “less
important components“

We consider here an image consising of only two
pixels for simplicity, and consider treating various
twopixel images. It is obvious that there can be many
combinations of pixel values in an image. Let the
two pixel values be x1 and x2, and consider illustrat-
ing the distribution of the images by locating each
image on x1x2− plane. Figure 1 is an example of the
distribution, and each of symbol “+” corresponds to
an image. In the case of Fig. 1, the variances of both
x1 and x2 are large. It indicates that both coordinates
have meaningful roles and neither x1 nor x2 can be
omitted.

On the other hand, in the case of the distribution as
shown in Fig. 2, the variance of x1 is large while that

of x2 is small, i. e. x2 does not vary very much for
all images. This means that only x1 is important for
expressing the difference of the images, and that x1
is not important and can be replaced with a constant,
for example the average of x2 for all images.

How can we create such distribution as Fig. 2 if
the original distribution of images is as Fig. 1? The
answer is rotating the coordinates as shown in Fig. 3.
The coordinates z1 and z2 are created by a rotation
of x1 and x2, respectively. The variance of z1 is the
maximum subject to all possible rotations in the case
of Fig. 3. The transformed pixel value z1 is the “most
important component” and z2 is the “less important
component” in this case.

Principal component analysis

We derive the above z1 and z2 in the followings.
We assume the relationship between z1 and (x1, x2)
as follows1:

z1 = a1x1 + a2x2. (1)

Let x1i and x2i be the values of pixels x1 and x2 of
the ith image, respectively. The averages of x1 and
x2, denoted x1 and x2, respectively, the variances s11
and s22, and the covariance s12 = s21 are defined as
follows:

x1 =
1
n

n∑

i=1
x1i, x2 =

1
n

n∑

i=1
x2i

s11 =
1
n

n∑

i=1
(x1i − x1)2, s22 = 1n

n∑

i=1
(x2i − x2)2

s12 = s21 =
1
n

n∑

i=1
(x1i − x1)(x2i − x2). (2)

Dividing the covariance s12 = s21 by (the standard
deviation of x1) × (the standard deviation of x2), i. e.√s11 √s22 , we get the correlation coefficient. The co-
variance is zero if x1 and x2 do not correlate. This is

1It is often assumed alternatively as z1 = a1(x1 − x1)+ a2(x2 − x2). The covariance matrices are the same as the case in the main text.
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intuitively explained as follows: If we take x1andx2
as new coordinates, (x1i − x1)(x2i − x2) is positive in
the first and the third quadrants, and negative in the
second and the fourth quadrants. If x1 and x2 do not
correlate, as shown in Fig. 4, positive values and neg-
ative values of the products (x1i − x1)(x2i − x2) cancel
each other and their summation is zero.

The variance of z1, denoted V(z1), is derived from
Eqs. (1) and (2), as follows:

V(z1) =
1
n

n∑

i=1
(z1i − z1)2

=
1
n

n∑

i=1
{(a1x1i + a2x2i) − (a1x1 + a2x2i)}2

=
1
n

n∑

i=1
{(a1(x1i − x1) + a2(x2i − x2)}2

=
1
n

n∑

i=1
{(a21(x1i − x1)2

+2a1a2(x1i − x1)(x2i − x2) + (a22(x2i − x2)2}

= a21{
1
n

n∑

i=1
(x1i − x1)2}

+2a1a2
1
n

n∑

i=1
(x1i − x1)(x2i − x2)

+a22{
1
n

n∑

i=1
(x2i − x2)2}

= a21s11 + 2a1a2s12 + a
2
2s22 (3)

We derive a1 and a2 that maximize V(z1). Assuming
that θ1 and θ2 are the angles between the vector z1 and
the coordinates x1 and x2, respectively, and assuming
that

a1 = cos θ1, a2 = cos θ2, (4)

we get that (a1, a2) is the direction cosine of the new
coordinate z1, and a1 and a2 satisfy

a21 + a
2
2 = 1. (5)

Thus deriving (a1, a2) is the maximization of V(z1)
under the condition of Eq. (5).

++

+ + +

+
+

x1

x2

Fig. 1: An example of the distribution of two-pixel
images (1).

x1

x2

++
+

+
+

+
+

Fig. 2: An example of the distribution of two-pixel
images (2).

This kind of conditional maximization problem is
solved by Lagrange’s method of indeterminate coeffi-
cient. By this method, this problem is reduced to the
unconditional maximization problem of maximizing

F(a1, a2, λ) = a21s11+2a1a2s12+a
2
2s22−λ(a21+a22−1),

(6)
where λ is the indeterminate coefficient. Deriving the

partial derivatives of F with respect to a1, a2, and λ,
and setting them to zero, we get

∂F
∂a1

= 2a1s11 + 2a2s12 − 2a1λ = 0
∂F
∂a2

= 2a2s22 + 2a1s12 − 2a2λ = 0
∂F
∂λ

= −λ(a21 + a22 − 1) = 0 (7)
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Fig. 3: Rotation of the coordinates.
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uncorrelated: the same number of
the positive and negative products

(a) (b)

 < 0

 < 0

 > 0

 > 0

  ( x1i – x1)( x2i – x2)   ( x1i – x1)( x2i – x2)

  ( x1i – x1)( x2i – x2)  ( x1i – x1)( x2i – x2)

Fig. 4: Meaning of covariance. (a) signature of (x1i−x1)(x2i−x2) in each quadrant. (b) the case of no correlation.

The third equation in Eq. (7) has been already satis-
fied since it is identical to Eq. (5). From the other
two equations, we get

a1s11 + a2s12 = a1λ

a2s22 + a1s12 = a2λ (8)

Rewriting this into the matrix form, we get
⎛⎜⎜⎜⎜⎜⎝
s11 s12
s12 s22

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
a1
a2

⎞⎟⎟⎟⎟⎟⎠ = λ
⎛⎜⎜⎜⎜⎜⎝
a1
a2

⎞⎟⎟⎟⎟⎟⎠ . (9)

The matrix in the left side of Eq. (9) is called covari-
ance matrix.

Solving Eq. (9) is an eigenvalue problem, where λ

is called eigenvalue and
⎛⎜⎜⎜⎜⎜⎝
a1
a2

⎞⎟⎟⎟⎟⎟⎠ is called eigenvector.
The variance V(z1) is derived as follows: Multiplying

a1 to the upper equation and a2 to the lower equation
in Eq. (8), we get

a21s11 + a1a2s12 = λa21
a1a2s12 + a22s22 = λa22 (10)

and then

a21s11 + 2a1a2s12 = λ(a
2
1 + a

2
2). (11)

From Eq. (3) and Eq. (5), we get

V(z1) = λ. (12)

The eigenvalue problem of Eq. (9) yields two pairs
of the eigenvalue λ and the eigenvector as the so-
lutions. Since the problem is the maximization of
V(z1) and the maximum of V(z1) is equal to λ, the
transformed basis z1 is obtained from the pair with
the larger eigenvalue. This basis is called the first

A. Asano / Pattern Information Processing (2007 Autumn semester) Session 5 (Nov. 12, 2007) Page 3/6



principal component, which is “the most important
component of image data.”

The covariance matrix is symmetric, as shown in
Eq. (9), and it is known that the eigenvectors of a
symmetric matrix are orthogonal. Thus the other ba-
sis z2 is derived from the other eigenvalue - eigenvec-
tor pair yielded as a solution of Eq. (9). The rotation
as shown in Fig. 3 is realized by the new coordinates
z1 and z2. This method is called the principal compo-
nent analysis (PCA).

Principal component analysis and diagonalization

We have considered two-pixel images so far. In
this section we extend the method to the case of p-
pixel images. In case that the image consists of the
pixels x1, x2, . . . , xp, we derive the transformed pixel
value

z = a1x1 + a2x2 + · · · + apxp (13)

where the variance of z is maximized subject to
a1, a2, · · · , ap. This problem is reduced, similarly to
the previous section, to the eigenvalue problem of

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s11 s12 · · · s1p
s12 s22 · · · s2p
...

. . .

sp1 sp2 · · · spp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2
...

ap

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2
...

ap

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

where si j denotes the covariance of xi and x j. The
p eigenvalues derived from Eq. (14) are, also simi-
larly to the previous section, the variances of p trans-
formed pixel values z1, z2, . . . , zp. Let the eigenvalues
be λ1, λ2, . . . , λp in descending order, and the corre-
sponding transformed pixel values be z1, z2, . . . , zp,
respectively. The pixel value z1 is “the component of
the maximum variance,” i. e. “the most important
component,” and z2 is the component where the vari-
ance is the maximum of the components which are
orthogonal to z1, and so on. The larger the suffix is,
the less important the component is. The transformed
pixel value zk is called the k-th principal component.

Let (a1(k), a2(k), . . . , ap(k))′ be the eigenvector cor-
responding to the eigenvalue λk.2 From Eq. (13), the

k-th principal component zk is expressed as

zk = a1(k)x1 + a2(k)x2 + · · · + ap(k)xp

=
(
a1(k) a2(k) · · · ap(k)

)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

If we denote the covariance matrix in Eq. (14) by S ,
we get from Eq. (14) as follows:

S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(k)
a2(k)
...

ap(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= λk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(k)
a2(k)
...

ap(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(k = 1, 2, . . . , p). (16)

Combining these equation for k = 1, 2, . . . , p, we get

S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(1) a1(2) · · · a1(p)
a2(1) a2(2) · · · a2(p)
...

. . .

ap(1) ap(2) · · · ap(p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(1) a1(2) · · · a1(p)
a2(1) a2(2) · · · a2(p)
...

. . .

ap(1) ap(2) · · · ap(p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0
λ2
. . .

0 λp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(17)

We define a matrix P whose columns are the eigen-
vectors arranged in descending order of correspond-
ing eigenvalues, i. e.

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(1) a1(2) · · · a1(p)
a2(1) a2(2) · · · a2(p)
...

. . .

ap(1) ap(2) · · · ap(p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (18)

and define the matrix Λ as follows:

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0
λ2
. . .

0 λp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

Using these expression, we get from Eq. (17) that

S P = PΛ, i.e. P−1S P = Λ. (20)
2The symbol ′ denotes the transposition of a matrix.
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The eigenvectors are normalized, as in Eq. (5) in
the case of two-pixel images, and they are orthogo-
nal since S is symmetric, i. e. the eigenvectors form
an orthonormal basis. Thus the matrix P is orthonor-
mal. Since P−1 = P′ if P is orthogonal, we get

P′S P = Λ, or S = PΛP′. (21)

The operation is called diagonalization of a symmet-
ric matrix S . Since it follows from Eq. (15) for
k = 1, 2, . . . , p that
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
...

zp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(1) a1(2) · · · a1(p)
a2(1) a2(2) · · · a2(p)
...

. . .

ap(1) ap(2) · · · ap(p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

the matrix P′ transforms the original pixel values
x1, x2, . . . , xp to the new pixel values z1, z2, . . . , zp.
Such a transformation by an orthogonal matrix is
called orthogonal transformation of an image. Equa-
tion (21 shows that the covariance matrix of the
original image set in terms of the pixel values
x1, x2, . . . , xp is obtained by the following operations:
“transforming it to the image set in terms of the
pixel values z1, z2, . . . , zp (by P′),” “obtaining the di-
agonal matrix Λ by arranging the eigenvalues,” and
“inverse-transforming to the image set in terms of
the pixel values x1, x2, . . . , xp (by (P′)−1 = P).”
This means that the covariance matrix of the image
set by the pixel values z1, z2, . . . , zp is diagonal and
all the covariances are zero, i. e. no pixel values of
z1, z2, . . . , zp correlate to each other.

Karhunen-Loève transformation

The contribution of the k-th principal component
is defined as the ratio of λk to (λ1+λ2+ · · ·+λp), i. e.
“the ratio of the variance of the k-th principal com-
ponent to the summation of variances.” The contri-
bution indicates “the importance of the transformed
pixel,” as explained in the first section. Consider the

case that the contributions of the n-th principal com-
ponents are zero or almost zero for all n > k. In the
example of the twopixel images in Fig. 2, the con-
tribution of the second principal component is con-
sidered almost zero. This means that the variance on
the basis corresponding to the second principal com-
ponent is almost zero, i. e. the variance of the trans-
formed pixel value z2 is almost zero. It follows that
the two-pixel images in terms of pixels x1 and x2 can
be almost expressed by z1 only and z2 of all the im-
ages can be replaced with a single value, for example
z2.

The principal component analysis at first makes the
contribution of the first principal component as large
as possible, and then the contribution of the second
one as large as possible, and so on. In other words,
the principal component analysis makes the contribu-
tion of the last principal components as small as pos-
sible. It means that omitting the several last princi-
pal components yields the smallest errors in the cases
that a certain number of pixels are omitted. The prin-
cipal component analysis has an ability of reducing
the data amount while the information of the original
data is preserved as much as possible.

If we consider the case that there are many p-pixel
images, and assume that only p/2 pixels are available
for one communication channel at a time. How can
we transmit the images while the information of the
original image is preserved as much as possible? As
shown so far, the answer is as follows: the image is
transformed to the principal components and only the
top p/2 principal components are transmitted. In this
sense, the orthogonal transformation of Eq. (22) is
called Karhunen-Loève transformation.

The receiver calculates the inverse transformation,
i. e. transformation from z to x, to obtain the images
which are almost the same as the original ones. This
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inverse transformation is as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (P′)−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
...

zp/2
zp/2+1
...

zp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
...

zp/2
zp/2+1
...

zp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

This method requires the covariance matrix of all the
images; it is generally impossible. If we assume the
ergodicity3, which is the property that the covari-

ances among the images can be replaced with the co-
variances within an image, of the images under con-
sideration, the covariance matrix can be calculated
from one image; This property, however, does not
hold for practical images generally.

To avoid this problem, it is widely applied to
choose a fixed set of basis vectors instead of calculat-
ing the principal components. The data compression
error of this basis is not the smallest, but sufficiently
small for almost all practical images. It will be ex-
plained in the following two sessions how to choose
an appropriate basis.

p-pixel images

1

p

transmission of
the top p / 2
principal 
components

transformation
to the
principal
componetnts

p-pixel images
(with the mimimum loss
of the information)

inverse
transformation

Fig. 5: Image compression by the KL transformation.

3See the references presented at the beginning of this course, for example: M. Petrou and P. Bosdogianni, Image Processing The
Fundamentals, for details.
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