
2007 Autumn semester Pattern Information Processing
Topic 3. Mathematical morphology

Session 9. (2) Granulometry and skeleton

In the second session of this topic, we explain

granulometry and size distribution for treating size

of objects quantitatively, and the concept of skeleton.

Granulometry expresses how much portion of each

size is contained in an object. This is the most es-

sential part of mathematical morphology, since the

origin of mathematical morphology comes from a

method of mineral particle analysis developed by G.

Matheron and J. Serra with the École de Mine du

Paris. The theoretical development of mathematical

morphology has begun from the requirement of quan-

titative estimation of particle shape and size for min-

eral analysis. Matheron also makes a lot of contri-

bution to the area of spatial statistics including krig-

ing, which is a method of estimating the resource dis-

tribution from geographical measurements at several

points, and random set theory, which is a framework

of probabilistic geometry.

Defintion of size

The “size” in the sense of the mathematical mor-

phology is defined as the magnification ratio between

a basic-shape object (expressed as a set) and its ho-

mothetic magnification. For example, if a circle

whose diameter is 1 cm is defined as “the circle of

size 1,” the circle of size 2 is the circle whose diame-

ter is 2 cm.

More generally, if we assume a continuous object

set B, “r-times magnified B” is defined as follows:

rB = {rb|b ∈ B}, (1)

If B is defined as an object of size 1, the size of rB is

r.

This definition is, however, not applicable to dis-

crete sets. If 2B is defined by Eq. (1) for a discrete

set B, 2B will contain unnecessary spaces, as shown

in the top center of Fig. 1. To avoid this, in case

of discrete sets, rB is defined by the Minkowski set

addition, as follows:

rB = B ⊕ B ⊕ · · · ⊕ B ((r − 1) times). (2)

Figure 1 shows 2B by this definition.

Note that B in Fig. 1(b) is a rhombus as shown by

2B, although it resembles a cross as B in Fig. 1.

Granulometry and size distribution

It was explained in the previous session that “the

opening of image X by structuring element B” means

“removing smaller portions than B from X.” It indi-

cates that the opening works as a filter to distinguish

portions of objects by their “sizes.”

Let B be a basic structuring element, and we pro-

duce homothetic structuring elements of increasing

sizes, 2B, 3B, . . . . We then perform opening of X by

the homothetic structuring elements, and obtain the

image sequence XB, X2B, X3B, . . . . In this sequence,

XB is obtained by removing the regions smaller than

B, X2B is obtained by removing the regions smaller

than 2B, X3B is obtained by removing the regions

smaller than 3B, . . . . If B is convex, it holds that

X ⊇ XB ⊇ X2B ⊇ X3B ⊇ . . . . This sequence of

openings is called granulometry. We then calculate

the ratio of the area of XrB to that of the original X at

each r. The area of an image is defined by the area

occupied by an image object, i. e. the number of pix-

els composing an image object in the case of discrete

images. The function from a size r to the correspond-

ing ratio is monotonically decreasing, and unity when

the size is zero. This function is called the size distri-

bution function. The size distribution function of size

r indicates the area ratio of the regions whose sizes
are greater than or equal to r.
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B {2b | b ∈ B} 2B = B⊕B

(a)

B {2b | b ∈ B} 2B = B⊕B

(b)

Fig. 1: Definition of size in case of discrete images. (a)

square. (b) rhombus.
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Fig. 2: Granulometry and size distribution.

We consider further the derivative of the size dis-

tribution function. In discrete case, it is equivalent

to the difference between the areas of adjacent sizes

in the granulometry. For example, if we consider the

difference between X2B and X3B,

The region composing X2B but not composing X3B

is

the region not removed by opening by 2B, but re-
moved by opening by 3B

i. e. the region whose size is exactly 2.

The derivative, i. e. the function from a size to

the area ratio corresponding to the size, is called the

size density function. The above discussion sug-

gests that the size distribution function and the size

density function have similar properties to the proba-

bility distribution function and the probability density

function, respectively.

More formally, the size distribution function of im-

age X by structuring element B is as follows:

FX,B(r) =
A(XrB)
A(X)

, (3)

where r is a size and A() indicates the area of image

objects. The size density function is defined in the

case of continuous images as follows:

pX,B(r) =
d
dr
(
1 − FX,B(r)

)
= − 1

A(X)
dA(XrB)

dr
, (4)

and in the case of discrete images as follows:

pX,B(r) =
(
1 − FX,B(r + 1)

) − (1 − FX,B(r)
)

= − 1
A(X)

(
A(XrB) − A(X(r+1)B)

)
. (5)

These definitions are for positive sizes. For negative

r, they are defined by replacing the openings with

the closings and the sizes r with |r|. Since opening

and closing are dual, the size distribution and den-

sity functions for negative r mean the operations for

the backgrounds. Figure 2 illustrates the process of

granulometry.

Features derived from size density function

An image can be evaluated by the following fea-

tures derived from its size density function, similarly

to the case of probability density function. The fol-

lowings show the cases of discrete images only, how-

ever, the expressions in the case of continuous images

are derived by only replacing the summations with

integrations. In the following equations N means the
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maximum size contained in an image X.

Size mean E(X, B) =
N∑

r=0

rpX,B(r). (6)

This feature indicates the mean size of the image X

by the structuring element B. The mean is the first-

order moment, and the second-order moment (vari-

ance) and higher-order moments can be defined and

the size density function is characterized by these

moments. They are called granulometric moments.

Size entropy H(X, B) = −
N∑

r=0

log pX,B(r). (7)

This feature indicates the average roughness of the

image X by the structuring element B. If H(X, B) = 0,

X contains B of only one size, and the roughness is

the minimum. If H(X, B) = log(N + 1)/(N + 1), i.

e. the maximum, X contains B’s of all sizes equally

and the roughness is the maximum.

Skeleton and medial axis transform

Skeleton in the sense of mathematical morphology

means shrinking an image object and deriving its me-

dial axis. The morphological skeleton has a charac-

teristic that the image can be reconstructed from its

skeleton.

The skeleton of an image object X by a structuring

element B, denoted S K(X, B), is defined as follows:

S n(X, B) = (X � nB̌) − (X � nB̌)B,

S K(X, B) =
⋃

n

S n(X, B). (8)

The object cannot be reconstructed from S K(X, B),

however, it can be reconstructed from the set of

S n(X, B). The assignment of the value n to each pixel

contained in S n(X, B) is called medial axis transfor-

mation. The image X is reconstructed from S n(X, B)

as follows:

X =
⋃

n

⎡⎢⎢⎢⎢⎢⎣
∑

n

(X, B) ⊕ nB

⎤⎥⎥⎥⎥⎥⎦ . (9)

Proof:

[S n(X, B) ⊕ nB]

=
[
(X � nB̌) − (X � nB̌)B

]
⊕ nB

= (X � nB̌) ⊕ nB − (X � nB̌)B ⊕ nB

= (X � nB̌) ⊕ nB − (X � nB̌ � B̌ ⊕ B) ⊕ nB

= X � nB̌ ⊕ nB − X � (n + 1)B̌ ⊕ (n + 1)B

= XnB − X(n+1)B. (10)

From the above, we get
⋃

n

[S n(X, B) ⊕ nB]

=
⋃

n

[
XnB − X(n+1)B

]

= (X − XB) ∪ (XB − X2B) ∪ (X2B − X3B) ∪ · · · .
(11)

Since (A − B) ∪ (B − C) = A − C and XnB = ∅ for

sufficiently large n, the right side of Eq. (11) equals

to X.

Intuitively speaking, Eq. (8) has the following

meanings: X � nB̌ means “the locus of the origin of

nB, a homothetic magnification of the structuring el-

ement B, when the smallest number of nB’s are em-

ployed to cover the whole inside of the object X.” In

this case (X�nB̌)−(X�nB̌)B means “the origin of nB

located at the corner of X, touching the object edge

at more than two points,” as shown in Fig. 3. Since

Eq. (8) performs this operations from smaller n to

larger, the skeleton is “the locus of the origin of nB

when nB’s are located at the corners, touching the

object edge at more than two points, from smaller n

to larger,” as shown in Fig. 4.
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Fig. 3: Schematic illustration of the meaning of Eq. (8).
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Fig. 4: Derivation of the skeleton.

A. Asano / Pattern Information Processing (2007 Autumn semester) Session 9 (Dec. 10, 2007) Page 4/4


