
2008 Autumn semester Pattern Information Processing
Topic 1. Sampling and digital processing of images

Session 2. (1) Spatial frequency and Fourier series expansion

Organization of digital images is explained in this
topic. Although an image is naturally a continuous
distribution of brightness, it has to be converted into a
discrete set of integers for computer processing. The
conversion into discrete pixels is called sampling, and
the conversion into integers is called quantization.
The sampling period is quite important issue, and it
is evaluated by the concept of spatial frequency. The
concept of spatial frequency and Fourier transforma-
tion are explained in this topic.

Diffraction of light and imaging

We start from the optical phenomenon of imaging.
The imaging is defined as a collection of diverged

light spread from a point of object into one point by
a lens. This phenomenon can be observed from the
following point of view: The light has the property of
diffraction. The diffraction of wave is a phenomenon
that the wave reaches beyond an opaque object ob-
stracting its path. For example, even if the progress
of wave on a water surface is obstructed by a board,
it reaches beyond the board. Since the light is a kind
of electromagnetic wave, the light has this property.
The radio wave reaches beyond obstructing objects
from the broadcasting station by diffraction.
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Fig. 1: Imaging.
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Fig. 2: Diffraction.

If the light passes through a diffraction grating,
which is an object whose transparence is changing
periodically or where transparent and opaque bands
are aligned one after another, the light that passes
through a transparent band interferes with the light
that passes the other transparent bands. Since the
light waves passing through adjacent bands empha-
size each other along the direction such that the phase
shift of the light waves is exactly the same as the
wavelength, a bright light, called the diffracted light

of first order, is obtained in this direction. The smaller
the period of bands, the larger the angle between the
diffracted light and the light passing directly through
the grating (called the zeroth order light). If the grat-
ing contains pure opaque and pure transparent bands
only, diffracted lights along several directions are ob-
tained. However, if the transparence of grating is si-
nusoidally distributed, diffracted lights of zeroth and
first orders only are obtained.
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Fig. 3: Diffraction grating and diffracted light of first order.

Suppose that a figure on a transparent film is il-
luminated by a plain light wave1. Suppose also the
figure is organized by a superposition of many si-
nusoidal wave of transparence, i.e. superposition of
many diffraction gratings. Each grating diffracts the
incident light and produces the diffracted light. The
smaller the period of grating is, the larger the angle
of diffraction is.

If these diffracted lights pass through the imaging
lens, each diffracted light is refracted and interferes
with the zeroth order light at the image plane. This
interference produces a stripe, or interference fringe,
on the image plane. The larger the angle of diffracted
light is, the smaller the period of stripe is. The distri-
bution of transparence on the film is reconstructed on
the image plane as the superposition of these stripes.
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Fig. 4: Imaging by diffraction and interference.
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Fig. 5: Spatial frequency.

Spatial frequency

Understanding the process of imaging, the figure
on the film is regarded as a superposition of sinu-

soidal waves of transparence. The number of repe-
tition of the sinusoidal wave per unit length is called

1The following explanation is in case of coherent illumination such as lasers. It is more complicated in the case of ordinary infoher-
ent illumination.
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spatial frequency. The unit of spatial frequency is cy-
cle/m in the MKSA unit system. Note that the wave
is “a wave on the plane.” Since the wave on the plane
has its direction, the spatial frequency is described
as a set of νx and νy which are frequencies along
x-direction and y-direction, respectively. The figure
on a film is decomposed into a set of waves of vari-
ous spatial frequencies. The amplitude of wave at a
specific spatial frequency is called component corre-
sponding to the spatial frequency.

Fourier series

It is shown in the previous section that a figure on a
film can be decomposed into spacial frequency com-
ponents. Fourier transformation is the operation to
calculate the components. The principle of Fourier
transformation will be explained in the following
way: The transparence distribution of the figure on
the film can be regarded as a mathematical function.
Here we assume onedimensional functions for sim-
plicity. The function f (x) is assumed as a superposi-
tion of sinusoidal waves of various frequencies. The
sinusoidal wave of frequency ν1 is expressed in ex-
ponential form as exp(i2πν1x). The multiplication of
2π expresses the frequency in radian per unit length.
This value, 2πν1, is called angular frequency.

This exponential function has the following prop-
erty:∫ ∞

−∞
exp(i2πν1x) exp(−i2πν2x)dx = δ(ν1 − ν2). (1)

The right side of Eq. (1) is called Dirac’s delta
function, defined as

δ(x) = 0(x � 0),
∫ ∞

−∞
δ(x) = 1. (2)

Equation (1) states that the integral has a nonzero
value only if two waves of the same frequency are
superposed, otherwise it has zero. Such kind of func-
tion set is called the orthogonal function system. This
is explained again in the section for image compres-
sion in Topic. 2.

Assuming that the function f (x) is a superposition
of sinusoidal waves, it can be expressed as follows:

f (x) = a1 exp(i(2πν1x + θ1))

+ a2 exp(i(2πν2x + θ2)) + · · ·
+ an exp(i(2πνnx + θn)) + · · · (3)

where θ1, θ2, . . . θn are phase shifts of each wave. Ap-
plying the following operation,

∫ ∞

−∞
f (x) exp(−i2πν1x)dx, (4)

to Eq. (3), we get

∫ ∞

−∞
f (x) exp(−i2πν1x)dx

=

∫ ∞

−∞
a1 exp(i(2πν1x + θ1)) exp(−i2πν1x)dx

+

∫ ∞

−∞
a2 exp(i(2πν2x + θ2)) exp(−i2πν1x)dx

+ · · · +
∫ ∞

−∞
an exp(i(2πνnx + θn)) exp(−i2πν1x)dx

+ · · · . (5)

From Eq. (1), we get that the first term of right side
of Eq. (5) is

∫ ∞

−∞
a1 exp(i(2πν1x + θ1)) exp(−i2πν1x)dx

=

∫ ∞

−∞
a1 exp(iθ1)) exp(i2πν1x) exp(−i2πν1x)dx

= a1 exp(iθ1)δ(0) (6)

and all the other terms are zero. Consequently, Eq.
(4) means the operation of extracting the amplitude
of the sinusoidal wave of frequency ν1, i. e. the com-
ponent of frequency ν1, as its real part. The imagi-
nary part indicates the phase shift of the wave.

Is it really able to express the original function f (x)
by a superposition of sinusoidal waves as Eq. (3)?

Let us assume that f (x) is a periodic function of
period L. In this case, periods of all the superposed
waves in Eq. (3) should be also L. Thus the right
side of Eq. (3) can contain the waves of fundamen-
tal periods L/2, L/3, L/4, . . . , L/n, . . . only, where n
is an integer. The infinite number of such waves can
be composed, however, the fundamental periods are
discrete. Thus the number of such waves is the count-
able infinity, and it is possible to express the function
by a sum of the infinite terms, called series, as shown
in Eq. (3). The series in Eq. (3) is called Fourier
series expansion.
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Appendix. Cosine wave and exponential function

In the explanation of Fourier series expansion, a
cosine wave is expressed by an exponential function.
Why is not a cosine function itself used? This is just
because the calculation of exponential functions is
simpler than that of trigonometric functions. The re-
lationship between these two functions and the mean-
ing of negative frequencies are explained in this ap-
pendix.

From Euler’s equation,

exp(iω) = cosω + i sinω, (A1)

we get the following relationship between the
trigonometric functions and the exponential function:

cosω =
exp(iω) + exp(−iω)

2

sinω =
exp(iω) − exp(−iω)

2i
. (A2)

From Eq. (A1), a cosine wave a1 cos 2πν1x in the
real domain is expressed using exponential functions
as follows:

a1 cos 2πν1x =
a1
2
exp(i2πν1x) +

a1
2
exp(i2π(−ν1)x),

(A3)
and in its Fourier series expantion we get two peaks
of height a1/2 at frequencies ν1 and −ν1. This shows

that one cosine wave corresponds to a combination
of positive and negative frequencies.

On the other hand, considering the wave of the
same amplitude and frequency with phase shift θ, we
get

a1 cos(2πν1x + θ)

=
a1
2
exp(i(2πν1x + θ))

+
a1
2
exp(−i(2πν1x + θ))

=
a1
2
exp(i2πν1) exp(iθ)

+
a1
2
exp(i2π(−ν1)x) exp(−iθ) (A4)

In this case, the amplitudes of peaks at ν1 and −ν1
are a1

2 exp(iθ) and
a1
2 exp(−iθ), respectively. In the

case of Eq. (A4), considering the axes of complex
amplitude and phase, we get that the amplitude is the
same as Eq. (A3), however, the additional peaks of
height θ along the axis of complex phase appear at
ν1 and −ν1. This example shows that a phase shift of
sinusoidal waves appears as a difference in complex
phase.

Reference
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Fig. 1: Expressions of phases. (a) a1 cos 2πν1x. (b) a1 cos(2πν1x + θ).
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