
2008 Autumn semester Pattern Information Processing
Topic 2. Image compression by orthogonal transformation

Session 6. (2) Orthogonal and unitary transformations of matrices

Image compression using vector expressions of
images and transformation of vectors into principal
components by orthogonal matrices were explained
in the previous session. In this session, it is explained
what corresponds to the above transformation in case
that an image is expressed by a matrix. The concepts
of orthogonal and unitary transformations and basis
images are also explained.

Kronecker product and transformation of a ma-
trix

Orthogonal transformation of vectors using vec-
tor expression of images was explained in the pre-
vious session. Digital image is, however, a two-
dimensional array of pixel values. Thus the matrix
expression is more suitable to an image.

We treated the transformation of an image vector x
into a vector z by matrix P in the previous session, i.
e.

z = Px. (1)

We assume here that the column vectors x and z con-
sist of m2 elements and the matrix P is m2 × m2.
We convert the image vector x into an image ma-

trix. We separate the column vector x into m column
subvectors x1, . . . , x j, . . . , xm of m elements, i. e.:

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

x j
...

xm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

For example, a column vector of 32 elements is sepa-
rated into 3 column subvectors of 3 elements. We get
an m × m matrix X by relocating these subvectors as
column vectors along the row direction, i. e. :

X =
(
x1 · · · x j · · · xm

)
. (3)

The matrix Z is obtained from the vector z in the
same manner. It is assumed that the m2 × m2 ma-
trix P is expressed by the following m × m matrices
C and R, as follows:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 · · · c1m
...
. . .

...

cm1 · · · cmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11 · · · r1m
...
. . .

...

rm1 · · · rmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11c11 · · · r11c1m r1mc11 · · · r1mc1m
...

. . .
... · · · ...

. . .
...

r11cm1 · · · r11cmm r1mcm1 · · · r1mcmm
...

. . .
...

rm1c11 · · · rm1c1m rmmc11 · · · rmmc1m
...

. . .
... · · · ...

. . .
...

rm1cm1 · · · rm1cmm rmmcm1 · · · rmmcmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

It means that the matrix P is composed by locating a
copy of the matrix C at each element of the matrix R.
This relationship is denoted as follows:

P = R ⊗C, (6)

and called that P is expressed by Kronecker product
of R and C.

Using these expressions, the transformation of the
vector x by the matrix P is expressed as follows:

Z = CXR′, (7)

i. e. the transformation of the matrix X by the matri-
ces C and R.

The above relationship is proved as follows: The
vectors x, z contain the subvectors x1, . . . , x j, . . . , xm
and z1, . . . , z j, . . . , zm, respectively, as shown in Eq.
(2). Let xi j, zi j be the ith elements of the jth subvec-
tors x j, z j, respectively. We get from Eq. (1) and (5)
that
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zi j =
(
r j1ci1 · · · r j1cim r jkci1 · · · r jkcim r jmci1 · · · r jmcim

)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11
...

xm1
...

x1k
...

xmk
...

x1m
...

xmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

m∑

k=1
r jk

m∑

l=1
cilxlk (8)

where k is an index of a subvector contained in x, and
l is an index of an element of the kth subvector xk.
Since zi j is an element in the ith row and jth column
of the matrix Z, we get from Eq. (7) that

zi j = (CX)ithrowR′jthcolumn

=

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

l=1
cilxl1 · · ·

m∑

l=1
cilxlk · · ·

m∑

l=1
cilxlm

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r j1
...

r jk
...

r jm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

m∑

k=1
r jk

m∑

l=1
cilxlk. (9)

Equations (8) and (9) show that Eq.(1) and Eq. (7)
are equivalent.

The inner product of two columns of P is as fol-

lows:
m∑

i=1
r1kcil · r1k′cil′ + · · ·

+

m∑

i=1
r jkcil · r jk′cil′ + · · · +

m∑

i=1
rmkcil · rmk′cil′

=

m∑

j=1

m∑

i=1
r jkcil · r jk′cil′

=

m∑

j=1
r jkr jk′

m∑

i=1
cilcil′ (10)

Assuming that P is orthonormal, the inner product is
1 if k = k′ and l = l′, and 0 otherwise. Since the for-
mer summation in the bottom row of Eq. (10) means
the product of the kth column and k′th column of the
matrix R, and the latter summation means the prod-
uct of the lth column and l′th column of the matrix
C, the matrix P is orthonormal if both R and C are
orthonormal.

We conclude from the above discussion that the
transformation of the image vector x by the orthonor-
mal matrix P is expressed by Eq. (7) in case of con-
verting the vector x to the matrix X, if P is expressed
by the Kronecker product of the orthonormal matri-

1The symbols “C” and “R” suggest the initials of Column and Row.
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ces C and R. Equation (7) indicates1 that the matrix
C operates on the columns of the matrix X, and the
matrix R operates on the rows of X. It follows that “P
can be expressed by the Kronecker product of C and
R” means “The operation of P can be separated into
the operation on the columns and that on the rows of
X.” This is called that P is separable.

Orthogonal and unitary transformations of matri-
ces

The objective of orthogonal transformation of an
image is separating the image into “more important
components” and “less important components,” as
explained in the previous session. It was explained
in the previous session how to reduce the latter ele-
ments of the vector z in the transformation of Eq. (1).
If we employ the expression of Eq. (7), explained in
this session, it is known that there exist such C and
R that Z becomes diagonal. The method to find such
C and R is known as singular value decomposition
(SVD). If the m × m matrix Z is diagonal, there are
only m nonzero elements in Z. It indicates that the
data compression similar to that in the previous ses-
sion is achieved.

However, differentC’s and R’s must be chosen for
different X’s by SVD. It indicates that the SVD can-

not achieve the transmission of images with a small
data amount by operating a common transformation
on various images. This problem is the same in the
case of KL transformation, explained in the previous
session, since the covariance matrix of the image set
under consideration must be known.

To avoid this problem, we consider such C and R
that are independent on the input image X and that
the transformed image Z contains as many elements
that are zero or nearly zero as possible. Assuming
that C = R since it is very rare that different oper-
ations should be applied to rows and columns of an
image, Eq. (7) is rewritten to

Z = RXR′. (11)

Since R is orthonormal, RR′ = I. Thus the inverse
transformation is

X = R′ZR. (12)

Such operation is called orthogonal transformation of
an image. If we assume that the elements of R are
complex, we select such R that RR′∗ = I. The sym-
bol ∗ indicates the complex conjugate. Such matrix is
called unitary matrix, and the transformation pair in
Eq. (11) and (12) is called unitary transformation.

Basis Image

Consider the decomposition of Z into the summation ofm2 matrices each of which contains only one nonzero
element, i. e.

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z11 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 z12 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · · +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · zmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

If we express R using row vectors as follows:

r′j =
(
r j1 · · · r jk · · · r jm

)
, R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r′1
...

r′j
...

r′m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)
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Eq. (12) is rewritten to the summation of the matrices composed by outer products of the rows of R, i. e. the
columns of R′, as follows:

X = R′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z11 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R + R′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 z12 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R + · · · + R′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · zmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R

= R′z11

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r′1
0′
...

0′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ R′z12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r′2
0′
...

0′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · · + R′z12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0′

0′
...

r′m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= z11r1r′1 + z12r1r
′
2 + · · · + zmmrmr′m

=

m∑

i=1

m∑

j=1
zi jrir′j

(15)

These outer products are called basis images. In
this expression, we can consider the elements zi j of
the transformed image to be the coefficients of the ba-
sis images, i. e. we can consider the original image X
to be the summation of every basis image multiplied
by zi j. If we assume the transmitter and the receiver
commonly know the basis images in advance, the
image compression is achieved by transmitting the
nonzero zi j’s only, if only a certain number of zi j are
regarded as almost zero. The image X is expressed
almost exactly by the basis images corresponding to
the nonzero zi j’s.
It is noticed that the above discussion is equiva-

lent to the discrete Fourier transformation explained
in the topic 1 if we replace the basis image with the

exponential function. The two-dimensional Fourier
transformation is one of unitary transformations, and
in this case combinations of sinusoidal waves of var-
ious frequencies appear as basis images. If the image
does not consist of high frequency components, the
basis images for high frequency waves are not used,
i. e. zi j’s corresponding to those basis images do not
have to be transmitted.

Various unitary transformations for the image
compression have been proposed. The next session,
the final of this topic, the discrete Fourier transfor-
mation as a unitary transformation, and the discrete
cosine transformation for the JPEG image compres-
sion, will be explained.
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