
2010 Spring (summer intensive) semester Special Lecture of Informatics
Topic 2. Mathematical morphology

Session 6. (3) Filter theorem /mathematical morphology and ordered set

This session presents two issues about mathemat-

ical morphology. Firstly, the filter theorem is ex-

plained; this theorem states that a wide range of im-

age processing filters can be expressed by morpho-

logical and logical operations. The image process-

ing filters will be explained again in the session on

the relationship between image processing and neu-

ral networks in the next topic. Secondly, the concept

of ordered set and its relationship to mathematical

morphology are explained. The morphological oper-

ations for binary images, explained in the first session

of this topic, are defined based on logical operations

(AND and OR) of sets. The morphological opera-

tions for gray scale images are defined by expand-

ing AND to infimum and OR to supremum. Defining

morphological operations for color images requires

the definition of infimum and supremum of vectors.

The definitions of vector infimum and supremum are

based on the concepts of ordered set and lattice.

Filter in the morphological sense

The filter in usual sense is defined as “an apparatus

(containing, eg sand, charcoal, paper, cloth) for hold-

ing back solid substances in an impure liquid passed

through it” (in Oxford Advanced Learner’s Dictio-
nary of Current English, 1980). As an analogy, image

processing filter is an algorithm that accepts a (cor-

rupted) image and applies an operation, for example

noise removal, to the image. The filter defined in

the morphological sense is restricted to translation-
invariant and increasing one. It is assumed that the

“filter” hereafter satisfies these conditions.

An operation Ψ on a set (or an image) is

translation-invariant if

[Ψ(Xb)]−b = Ψ(X), (1)

i. e. the effect of the operation is identical every-

where in the image. An operation Ψ is increasing if

X ⊂ Y ⇒ Ψ(X) ⊂ Ψ(Y), (2)

i. e. the relationship of inclusion is preserved by the

operation.

In the sense of mathematical morphology, morpho-
logical filter in broader sense is defined as all transla-

tioninvariant and increasing operations. Let us con-

sider a noise removing filter for example; Since noise

objects in an image should be removed wherever it

is located, the translation-invariance is naturally re-

quired for noise removing filters. An increasing op-

eration can express an operation that removes smaller

objects and preserves larger objects, but cannot ex-

press an operation that removes larger and preserves

smaller. Noise objects are, however, usually smaller

than meaningful objects. Thus it is also natural to

consider increasing operations only.

The morphological filter in narrower sense is all

translation- invariant, increasing, and idempotent op-

erations. An operation Ψ is defined idempotent if

Ψ [Ψ(X)] = Ψ(X), (3)

i. e. iterative operations of Ψ is equivalent to one op-

eration of Ψ. The opening and closing are the most

basic morphological filters in narrower sense.

Filter theorem

The filter theorem states that all morphological fil-

ters can be expressed by OR of erosions. LetΨ(X) be

a filter on the image X. The theorem states that the

following holds for all Ψ(X):

Ψ(X) =
⋃

B∈Ker[Ψ]

X � B̌. (4)

Here the set family Ker[Ψ] is called kernel of filter

Ψ, defined as follows:

Ker(Ψ) = {X|0 ∈ Ψ(X)}, (5)

where “0” indicates the origin of X.

The following relationships hold for filters and

their kernels:

Ker(Ψ1) = Ker(Ψ2)⇔ Ψ1 = Ψ2. (6)
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Equation (6) indicates that a filter is expressed

uniquely by its kernel.

The proof of the filter theorem in Eq. (4) is pre-

sented in the following. A more general proof is

found in Chap. 4 of [2].

Let us consider an arbitrary vector (pixel) h ∈ X�B̌
for a structuring element B ∈ Ker[Ψ]. From the def-

inition of X � B̌, Bh ⊆ X. Consequently, B ⊆ X−h.

Since Ψ is increasing, the relationship B ⊆ X−h is

invariant by filter Ψ. Thus we get 0 ∈ Ψ(B) ⇒
0 ∈ Ψ(X−h). Since Ψ is translation-invariant, we get

0 ∈ Ψ(B) ⇒ h ∈ Ψ(X) by translating 0 ∈ Ψ(X−h) by

h. From the above discussion, h ∈ X� B̌⇒ h ∈ Ψ(X)

for all structuring element B ∈ Ker[Ψ]. Thus Ψ(X) ⊇⋃
B∈Ker[Ψ] X � B̌.

Let us consider an arbitrary vector h ∈ Ψ(X). Since

Ψ is translation-invariant, h ∈ Ψ(X) ⇒ 0 ∈ Ψ(X−h).

Thus we get X−h ∈ Ker[Ψ]. Since X � X̌−h = {h′ |
(X−h)h′ ⊆ X}, and {(X−h)h′ ⊆ X} is satisfied if h′ = h,

we get h ∈ X � X̌−h. By denoting X−h by B, we get

h ∈ X � B̌.

Consequently, there exists a structuring element

B ∈ Ker[Ψ] such that h ∈ Ψ(X) ⇒ h ∈ X � B̌, i.

e. any pixel in Ψ(X) can be included in X � B̌ by us-

ing a certain structuring element B ∈ Ker[Ψ]. Thus

Ψ(X) ⊆ ⋃B∈Ker[Ψ] X � B̌.

From the above discussion, it holds that Ψ(X) =⋃
B∈Ker[Ψ] X � B̌.

The kernel is generally redundant and contains un-

necessary sets for reconstruction of the filter. The

family of necessary sets for the reconstruction of

Ψ(X) is called the basis.

Examples of morphological expressions of filters

We show some examples of morphological expres-

sions of the median filter and the average filter, which

are typical translation-invariant and increasing image

processing filters. These filters calculate the median

or the average of each pixel and its neighborhood pix-

els, and output this value as the pixel value at the

same pixel position in the resultant image. The shape

and size of the neighborhood are identical at every

pixel in case of the translation-invariants filters, and

the neighborhood is called window. The window is

equivalent to the structuring element in morphologi-

cal operations.

The median filter whose window size is n pixel is

expressed as follows:

”the minimum of maximum ( or of min-

imum) in every possible subwindow of

[n/2 + 1] pixels in the window.”

The operations deriving the maximum and mini-

mum in each subwindow at every pixel are the set

addition and set subtraction using the subwindow as

the structuring element, respectively. Since the max-

imum and minimum operations are the fuzzy exten-

sions of logical OR and AND operations, respec-

tively, the median filter is expressed by the combi-

nation of morphological and logical operations, as

shown in Figs. 1 and 2.

The simplest average filter operation, that is, the

average of two pixel values f(x) and f(x+1), is ex-

pressed by the minimum and the supremum, as fol-

lows:

0.5[ f (x)+ f (x+1)] = sup
r∈R

[min{ f (x)− r, f (x+1)+ r}],
(7)

as shown in Fig. 3. This method of expressing the

average of two values by the maximum and the min-

imum is equivalent to “the method to divide a cake

into two even pieces,” found in some children’s quiz

books. This method of serving a bar-type cake for

two children P and Q is, if both of the children want

to get the possibly largest piece, as follows:

1. P moves the knife slowly along the cake from

an edge.

2. Q calls “stop” during the movement, and then

P stops the knife.

3. P divides the cake at the current position of

the knife, and P takes one of two pieces as P

prefers.

Since P must take the larger piece of the two, Q

calls “stop” so as to minimize the larger piece. Thus

the cake is divided into two even pieces.

A. Asano / Special Lecture of Informatics (2010 Spring (summer intensive) semester) Session 6 (Aug. 6, 2010) Page 2/4



. . .. . .

window of 3 pixels

{

pixel

3 subwindows
containing
[3/2 + 1] = 2 pixels

Fig. 1: Subwindows of [n/2 + 1] pixels.
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Fig. 2: Median expressed by the maximum and mini-

mum.
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Fig. 4: Examples of lattice.

Color image and the concept of ordered set

Each pixel value of a color image is a vector whose

elements indicate the brightness on a color basis like

RGB, YIQ, etc. A definition of “maximum” and

“minimum” of vectors is required for defining the

morphological operations of color images.

A simple way of the definition is dividing the

color image into each color plane, and applying the

morphological operation to each plane separately us-

ing an identical structuring element. However, this

method causes a color change of a specific object,

since it is possible that an object is removed on a

plane while the same object is preserved on another

plane. This situation is out of “handling shape of

objects,” the essential concept of mathematical mor-

phology.

There is a more sophisticated way that defines an

“order” of vectors and the “maximum” and “mini-

mum” of a set of vectors. Such set of vectors is

called ordered set. The morphological operations on
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gray scale images are defined using the maximum

and minimum of a subset of pixel values; Similarly,

the morphological operations on color images can be

defined if the supremum and infimum are defined for

an arbitrary subset of vectors. Such algebraic system

consists of an ordered set and the supremum and in-

fimum operations is called lattice.

Definitions for ordered set and lattice [1]

A relationship “≤” on a set X is called ordering or

partial ordering if this relationship satisfies the fol-

lowing three properties:

1. Reflectivity — For all x ∈ X, x ≤ x.

2. Anti-symmetry — For all x, y ∈ X, x = y if

x ≤ y and y ≤ x.

3. Transitivity — For all x, y, z ∈ X, x ≤ z if x ≤ y
and y ≤ z.

X is called semiordered set (or partially ordered
set, or poset) if an ordering is defined for some pairs

of the elements of X. For an ordering “≤,” it is called

that x is lower to y and y is upper to x when x ≤ y 1.

X is called totally ordered set if an ordering is de-

fined for all pairs of the elements of X. All the el-

ements of a totally ordered set can be arranged on a

straight line in the defined order. For example, a sub-

set of integers, for example possible values of gray

scale pixels, is a totally ordered set with respect to

the ordering ≤ (in ordinary sense).

For an element a of a subset A of an ordered set X,

a is defined maximal of A if there is no

element upper to a except a itself in A,

and defined minimal if there is no ele-

ment lower to a except a itself in A. In

this case there can be an element whose

ordering to a is not defined in A.

a is defined maximum of A if a is upper
to all elements of A, and defined mini-
mum if a is lower to all elements of A.

The set of the elements of X that are upper [lower]

to all the elements of A is defined upper bound [lower
bound] of A. If the minimum [maximum] of the up-

per bound [lower bound] of A exists, it is defined

supremum [infimum] of A. Note that the supremum

and infimum are not always an element of A. If the

supremum [infimum] is an element of A, it is equiva-

lent to the maximum [minimum] of A.

If the upper bound and lower bound are defined for

all combinations of two elements of X, and if the up-

per bounds and lower bounds are always in X, the

algebraic system consisting of the set X and the oper-

ations to define the upper bound and lower bound is

called lattice.

Figure 4 is called Hasse diagram, which illustrates

orderings. Figures 4(a)(b) and (c) are examples of

lattices. Figure 4(a) is a totally order set, and its

Hasse diagram is a straight line. In Fig. 4(b), note

that the upper bound of the elements c and d is not c
or e, but b. Figure 4(c) shows a lattice composed by

assigning an ordering on the vertices of a cube.

Lattice and morphology on color images

It follows from the above discussion that the mor-

phological operations can be defined if the ordering

of the vectors for color pixel values is defined to com-

pose a lattice. There are several vector spaces to de-

fine color vectors , for example the RGB system as

well as the YIQ system based on the brightness and

color difference. Generally the ordering is defined

by a linear combination of vector elements. How-

ever, researches of this area are in progress and var-

ious methods are being proposed. The lattice is also

used for a general mathematical formulations of the

mathematical morphology [2].
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1Although the symbol “≤” is often used to express an ordering, it is not related to the inequality symbol in the ordinary mathematical

sense. The terms upper and lower only have the meaning that y is defined upper if x ≤ y.

A. Asano / Special Lecture of Informatics (2010 Spring (summer intensive) semester) Session 6 (Aug. 6, 2010) Page 4/4


