
2010 Spring (summer intensive) semester Special Lecture of Informatics
Topic 3. Computed Tomography - Image reconstruction from projection

Session 8. (2) Image reconstruction from projections

In the previous session, we explained the projection theorem and the defect of the reconstruction by the

Fourier transformation method, which is a direct application of the projection theorem. We explain a more

practical method derived from the simple back-projection in this session.

Back-projection method

Let us consider a simpler reconstruction method. To reconstruct f (x, y), which is the absorbance at point

(x, y), we consider the summation of projections passing through (x, y) for all θ. Since these projections are line

integrals through f (x, y), f (x, y) is duplicated and enhanced in the summation. Thus f (x, y) is reconstructed

by this summation although it contains blur by absorbances at other points included in the projections. This

reconstruction method is called back-projection method. Let us consider whether this method really achieves

the reconstruction.

A part of Radon transform g(s, θ) projected on the axis of angle θ and passing through (x, y) is g(x cos θ +

y sin θ, θ) because

s = x cos θ + y sin θ, (1)

explained in the previous session. The summation of g(x cos θ + y sin θ, θ) for all θ yields the reconstructed

image by the back-projection method, denoted b(x, y), i. e.

b(x, y) =

∫ π
0

g(x cos θ + y sin θ, θ)dθ. (2)

Substituting the definition of the Radon transformation (Eq. (6) in the previous session),

g(s, θ) =
∫∫ ∞
−∞

f (x, y)δ(x cos θ + y sin θ − s)dxdy, (3)

and Eq (1) into Eq. (2), we get

b(x, y) =

∫ π
0

[∫∫ ∞
−∞

f (x′, y′)δ(x′ cos θ + y′ sin θ − (x cos θ + y sin θ))dx′dy′
]

dθ

=

∫∫ ∞
−∞

f (x′, y′)
[∫ π

0

δ((x′ − x) cos θ + (y′ − y) sin θ))dθ
]

dx′dy′. (4)

We employ here the theorem that

δ[h(θ)] =
∑

k

1

|h′(θk)|δ[θ − θk] (5)

if a function h(θ) = 0 for a finite number of θ = θk only (proof is omitted). For the argument of the δ-function

in Eq. (4), it follows that

(x′ − x) cos θ + (y′ − y) sin θ) =
√

(x′ − x)2 + (y′ − y)2 sin(θ + α),

α = cos−1 y′−y√
(x′−x)2+(y′−y)2

= sin−1 x′−x√
(x′−x)2+(y′−y)2

(6)

and the argument is zero, if and only if θ = π − α for 0 ≤ θ < π. Thus it follows from the δ-function in Eq. (4)

that

δ((x′ − x) cos θ + (y′ − y) sin θ)) =
1∣∣∣∣ √(x′ − x)2 + (y′ − y)2 cos(π)

∣∣∣∣δ(θ − (π − α)), (7)
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and then we get from Eq. (4) that

b(x, y) =

∫∫ ∞
−∞

f (x′, y′)
⎡⎢⎢⎢⎢⎢⎣ 1√

(x′ − x)2 + (y′ − y)2

⎤⎥⎥⎥⎥⎥⎦ dx′dy′

= f (x, y) ∗
⎡⎢⎢⎢⎢⎢⎣ 1√

x2 + y2

⎤⎥⎥⎥⎥⎥⎦ . (8)

The symbol ∗ denotes the convolution. Consequently, b(x, y), the reconstructed image by the back-projection

method, is obtained by blurring f (x, y) by convoluting 1/
√

x2 + y2.

This “reconstructed image” is highly blurred and not the real reconstruction. However, the Fourier transfor-

mation of Eq. (S14backproj3) yields

FT [b(x, y)] = FT [ f (x, y)] × FT

⎡⎢⎢⎢⎢⎢⎣ 1√
x2 + y2

⎤⎥⎥⎥⎥⎥⎦
thus FT [ f (x, y)] = FT [b(x, y)]/FT

⎡⎢⎢⎢⎢⎢⎣ 1√
x2 + y2

⎤⎥⎥⎥⎥⎥⎦ , (9)

since the Fourier transform of the convolution of two functions equals to the product of the Fourier transforms

of the two functions. Employing

FT

⎡⎢⎢⎢⎢⎢⎣ 1√
x2 + y2

⎤⎥⎥⎥⎥⎥⎦ = 1√
f 2
x + f 2

y

(10)

(proof is omitted), Eq. (9) is rewritten to

FT [ f (x, y)] =

√
f 2
x + f 2

y × FT [b(x, y)]. (11)

Equation (11) yields the Fourier transform of the original object f (x, y). This deblurring is called inverse
filtering, and this kind of the inverse operation of convolution is called deconvolution.

This method has the following two problems: 1) FT [b(x, y)] should be calculated within an area much

broader than the support of f (x, y), since the back-projection b(x, y) is spread by blurring f (x, y). 2) f (x, y) is

positive at every (x, y) since it is a distribution of absorbance. However, from Eq. (11), FT [ f (x, y)] = 0 when

fx = fy = 0. It means that the DC component of f (x, y) is zero and negative values should appear in f (x, y).

This is a contradiction. The reason is that FT [b(x, y)] diverges at fx = fy = 0 and no information on f (x, y) is

obtained there.

Filter back-projection method

Although the back-projection method cannot yield a good reconstruction as explained in the previous section,

a practical reconstruction method is derived from the back-projection method using the projection theorem.

We rewrite FT [ f (x, y)] to F( fx, fy). Since f (x, y) is obtained by the inverse Fourier transformation of

F( fx, fy), we get

f (x, y) =

∫∫ ∞
−∞

F( fx, fy) exp(i2π( fxx + fyy))d fxd fy. (12)

Converting this into the polar coordinate (ξ, θ) using the relationship fx = ξ cos θ and fy = ξ sin θ as shown in

Fig. 1, we get

f (x, y) =

∫ 2π

0

∫ ∞
0

F(ξ cos θ, ξ sin θ) exp(i2πξ(x cos θ + y sin θ))ξdξdθ. (13)
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Fig. 1: Projection theorem.

The projection theorem states that

Gθ(ξ) = F(ξ cos θ, ξ sin θ), (14)

where Gθ(ξ) is the one dimensional Fourier transform of the Radon transform g(s, θ) with respect to s, as shown

in Eq. (14) in the previous session. It follows that

f (x, y) =

∫ 2π

0

∫ ∞
0

Gθ(ξ) exp(i2πξ(x cos θ + y sin θ))ξdξdθ. (15)

Rewriting the interval of integral on ξ to (−∞,∞) and that on θ to (0, π), we get

f (x, y) =

∫ π
0

∫ ∞
−∞

Gθ(ξ) exp(i2πξ(x cos θ + y sin θ))|ξ|dξdθ, (16)

and employing Eq. (1), we get

f (x, y) =

∫ π
0

[∫ ∞
−∞
|ξ|Gθ(ξ) exp(i2πsξ)dξ

]
dθ. (17)

The integral within {} is the inverse Fourier transform of a function |ξ|Gθ(ξ).
Defining

ĝ(s, θ) = ĝ(x cos θ + y sin θ, θ) ≡
∫ ∞
−∞
|ξ|Gθ(ξ) exp(i2πsξ)dξ, (18)

we get

f (x, y) =

∫ π
0

ĝ(x cos θ + y sin θ, θ)dθ. (19)

This is in the same form of the back-projection in Eq. (2). Consequently, Eq. (19) states that the original object

f (x, y) is obtained by applying the filter that multiplies |ξ| to the Radon transforms and then performing the

backprojection. This method is called filter back-projection method. This method performs the back-projection
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Fig. 2: Filter functions. (a) Original filter function (|ξ|). (b) Ram-Lak filter. (c) Shepp-Logan filter.

after applying the filter, contrarily to the back-projection with deconvolution, which is explained in the previous

section, which applies the filtering after the back-projection.

This method does not require the inverse Fourier transformation of the spread blurred image, since the Fourier

transformation is applied to the projections only. Although this method requires an interpolation between the

polar coordinate to the Cartesian coordinate similarly to the Fourier transformation method, no artifact spread

over the whole real domain is occurred, since this method carries out the interpolation in the real domain

contrarily to the Fourier transformation method. Since the filtering can be applied for each θ independently, the

filtering for a θ can be applied parallelly before the capture of projection at another θ is completed.

Equation (18) indicates the inverse Fourier transformation of the product of Gθ(ξ), which is the Fourier

transform of the Radon transform g(s, θ), and the filter function |ξ| . If we employ FT−1[|ξ|] , which is the filter

function in the real domain, we get

ĝ(s, θ) = g(s, θ) ∗ FT−1[|ξ|] (20)

This is a simple convolution and the Fourier transformation is not required. This method is called convolution
back-projection method.

Realization of the filter function

We should discuss how to realize the filter that multiplies |ξ| in the frequency domain. Since the gain of this

filter is proportional to |ξ|, the gain is infinite at the infinite frequency, as shown in Fig. 2(a). Such filter cannot

be practically realized.

To solve this problem, the filter should be modified to be defined on a finite support in the frequency domain.

Since the filter response at frequencies higher than the highest spatial frequency of the projection, denoted ξmax,

is meaningless, the frequency components higher than ξ max can be truncated. We consider truncating the

function |ξ| at ξmax, as shown in Fig. 2(b). This is called Ramachandran-Lakshminarayanan (or Ram-Lak)

filter, and its filter function is

H(ξ) = |ξ|rect

(
ξ

2ξmax

)
. (21)

Since the Ram-Lak filter emphasizes higher frequencies, it often emphasizes noises in images. Various modifi-

cations of this filter for noise reduction by suppressing the gain in high frequencies have been proposed. One

typical example is Shepp-Logan filter, whose filter function is

H(ξ) = |ξ|sinc

(
ξ

2ξmax

)
rect

(
ξ

2ξmax

)
, (22)

as shown in Fig. 2(c). This filter is a modified version of the Ram-Lak filter by multiplying the sinc func-

tion. Since this multiplication is equivalent to the convolution with the rect function in the real domain, this

modification is equivalent to the average filtering in the real domain.
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