

拡張されていく「数」

2

sano, Kansai L

1

拡張されていく「数」

···, -3, -2, -1, 0, 1, 2, 3, ··· 整数 自然数

実数 …, 2/3, 1/2, 1/3, … ^{有限小数と}無限小数 —

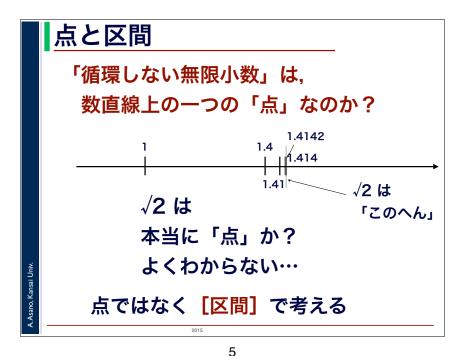
 $\sqrt{2}$, $\sqrt[3]{3}$ 循環しない 無限小数

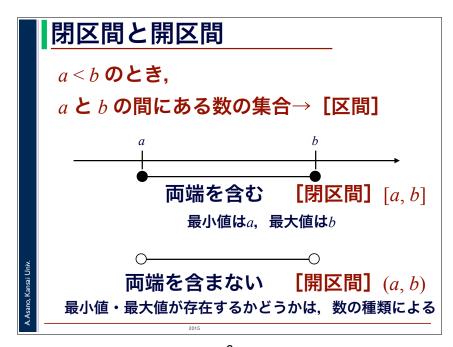
無理数

有理数

今日扱うのは

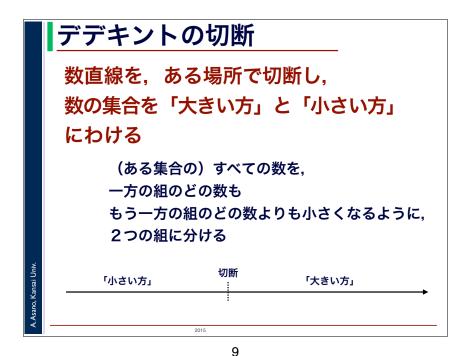
「実数の連続性を示す方法」

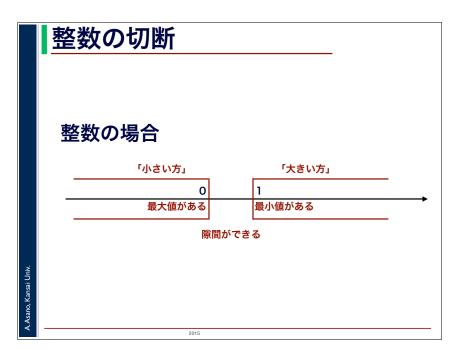

いくつか挙げますが、どれも等価です


3

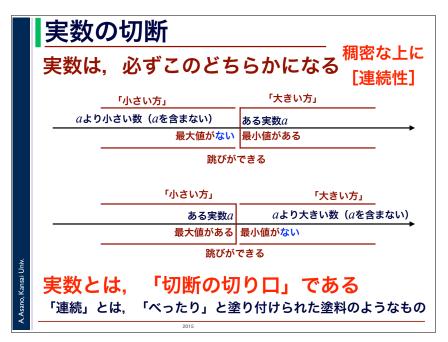
無限小数と カントールの公理

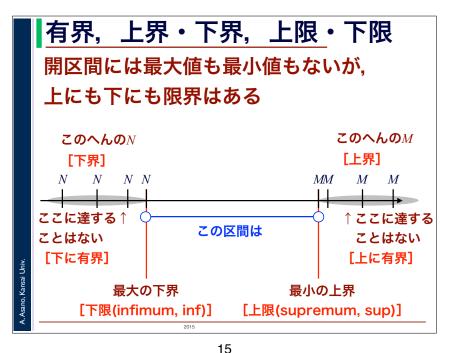
no, Kansai Uni


2015






その極限が√2 = 1.4142135…


有理数の切断 有理数の場合 「小さい方」の最大値がない 1よりも小さく 1にいくらでも近い有理数が存在する 「小さい方」 「大きい方」 1(有理数) 最小値がある 跳びができる 「稠密性」 「大きい方」の最小値がない 1よりも大きく 1にいくらでも近い有理数が存在する 「小さい方」 「大きい方」 最大値がある 跳びができる

13

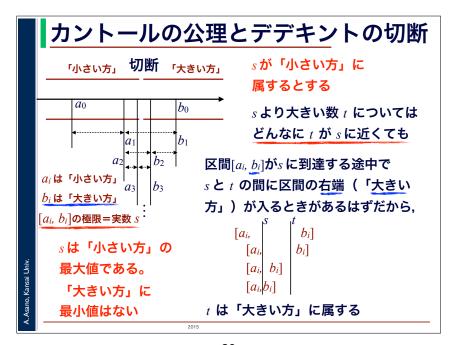
上限と下限 ワイエルシュトラスの定理

14

ワイエルシュトラスの定理 実数からなる集合が下(上)に有界ならば 必ず下限(上限)が存在する デデキントの切断から導ける 実数からなるある集合Sが、下に有界とすると、 Sの下界である数 Sの下界でない数 ある実数な Sの下界である数 Sの下界でない数 ある実数 どちらかの切断を形成し、実数sが定まる。

16

下の切断なら、下限が存在する。上の切断にならないことを示す


アイエルシュトラスの定理 こちらの切断だとすると Sの下界である数 Sの下界でない数 ある実数s Sの下界でない数のうちの最小の数 実数 s は,Sの下界でない数だから,集合Sを見ると 集合S s(下界でない) t u s より小さな数 t が,集合Sに属しているはず s と t の間にある数 u も,集合Sに属しているはず u は t より大きいから,u は「集合Sの下界ではない数」である s は u より大きい。 これは,「s は集合Sの下界ではない数のうちで最小」に矛盾

17

カントールの公理とデデキントの切断 カントールの公理によって定まる実数は、デデキントの切断によって切り口に現れる実数と同じか? 「小さい方」 切断 「大きい方」 「いさい方」 切断 「大きい方」 おり である点を、それぞれ a_{i+1}、b_{i+1} とする より、1つの実数 s を定める この s は、デデキントの切断による「切り口」にあるか?

実数を定義する 各公理・定理間の関係

18

実数の連続性を示すさまざまな公理

カントールの公理 実数は入れ子の閉区間の極限

デデキントの切断による公理

実数は切断の「切り口」

ワイエルシュトラスの定理

実数の集合が有界ならば、上限か下限がある

実数の有界な単調数列は収束する

(これは次回)

いずれも同値である

21

5

連続性裁判

映画の著作権

公開から50年後の年の年末まで有効

→2004年1月1日から「70年」に延長

1953年公開の映画の著作権はどうなる?

23

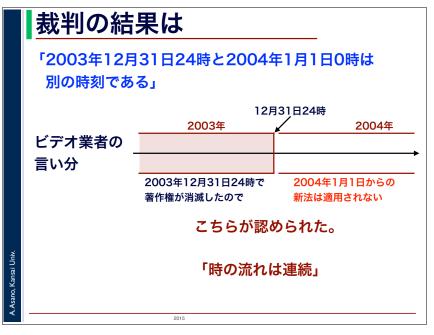
2015

連続性裁判

~こんな数学、何か役に立つの?~

22

連続性裁判 1953年公開の映画の著作権は 12月31日24時 2003年 2004年 ビデオ業者の 言い分 2003年12月31日24時で 2004年1月1日からの 著作権が消滅したので 新法は適用されない 12月31日24時=1月1日0時 2003年 2004年 文化庁の 言い分 2003年12月31日24時と 2004年1月1日からの


2004年1月1日0時は

24

同じ時刻だから

新法が適用され.

著作権はあと20年有効

今日のまとめ

実数の「連続性」

実数の連続性を示す方法

カントールの公理 デデキントの切断による公理 ワイエルシュトラスの定理

25