2015年度秋学期 応用数学 (解析) 第4

第1部・「無限」の理解 収束とは何か, ε-δ論法

浅野 晃 関西大学総合情報学部

何かだまされている気がする

微分を習ったときの説明

.

微分の説明

関数 f(x) = x² の微分

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} \quad h \text{ はゼロに近づいているだけで,}$$

$$= \lim_{h \to 0} \underbrace{\frac{h(2x+h)}{h}}_{h \to 0} \quad \text{ゼロではないから,}$$

$$= \lim_{h \to 0} (2x+h) = 2x$$

やっぱり h はゼロ

これっておかしくありませんか?

sano. Kansai Ur

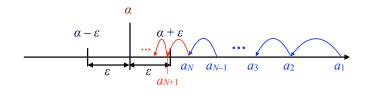
収束=「限りなく近づく」ことの 意味

数列の収束の定義

数列 $\{a_n\}$ が α に収束するとは

数列が十分大きな番号 N まで進めば

N番より大きな番号 n については、 a_n はみなその狭い区間[$\alpha - \varepsilon$, $\alpha + \varepsilon$]に入る

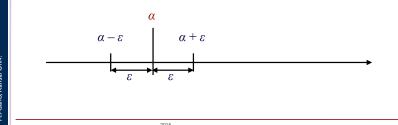


数列の収束の定義

数列 $\{a_n\}$ が α に収束するとは

 α のまわりにどんなに狭い区間

 $[\alpha - \varepsilon, \alpha + \varepsilon]$ を設定しても $(\varepsilon > 0)$

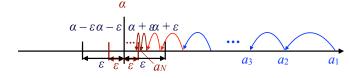


数列の収束の定義

数列 $\{a_n\}$ が α に収束するとは

数列が十分大きな番号 N まで進めば

N 番より大きな番号 n については、 a_n はみなその狭い区間[$\alpha - \varepsilon$, $\alpha + \varepsilon$]に入る



εをどんなに小さくしても そういう*N*がある

/

2015

数列の収束の定義

数列 $\{a_n\}$ が α に収束するとは

 α のまわりにどんなに狭い区間

 $[\alpha - \varepsilon, \alpha + \varepsilon]$ を設定しても $(\varepsilon > 0)$

数列が十分大きな番号 N まで進めば

N 番より大きな番号 n については、 a_n はみなその狭い区間[$\alpha - \varepsilon$, $\alpha + \varepsilon$]に入る

 $\varepsilon - N$ 論法

 $\forall \varepsilon > 0, \exists N; n > N \Rightarrow |a_n - \alpha| < \varepsilon$

2015

数列の発散の定義

数列 $\{a_n\}$ が ∞ に発散する

どんなに大きな数 G を持ってきても、

数列が十分大きな番号 N まで進めば

N 番より大きな番号 n については, a_n はみな G より大きくなる

 $\forall G, \exists N : n > N \Rightarrow a_n > G$

2015

収束や発散は「無限」なのか

「無限」とはひとことも言っていない

どんなに狭い区間 $[\alpha - \varepsilon, \alpha + \varepsilon]$

どんなに大きな数 G

十分大きな番号 N

どれも「無限」ではなく有限

ただし、求めに応じて 好きなだけ狭く・大きくできる

2015

実数の連続性と収束

no, Kansai Ur

no, Kansai Univ.

数列の収束に関する例題

例題

a>0 のとき $\lim_{n o\infty}rac{a^n}{n!}=0$ を証明せよ。

 $\frac{a^k}{k!} = C$ と置く。番号 k は,k > 2a であるとする。

n > k となる番号 n について、

$$\frac{a^n}{n!} = \frac{a^k}{k!} \times \frac{a}{k+1} \times \frac{a}{k+2} \times \dots \times \frac{a}{n}$$

$$= C \times \frac{a}{k+1} \times \frac{a}{k+2} \times \dots \times \frac{a}{k+(n-k)}$$

Asano, Kansai I

2015

n > k となる番号 n について.

$$\frac{a^n}{n!} = \frac{a^k}{k!} \times \frac{a}{k+1} \times \frac{a}{k+2} \times \dots \times \frac{a}{n}$$

$$= C \times \frac{a}{k+1} \times \frac{a}{k+2} \times \dots \times \frac{a}{k+(n-k)}$$

$$k > 2a$$

$$\frac{a^n}{n!} < C \times \frac{a}{2a+1} \times \frac{a}{2a+2} \times \dots \times \frac{a}{2a+(n-k)}$$

$$< C \times \left(\frac{1}{2}\right)^{n-k} = \frac{C \cdot 2^k}{(2^n)} < \frac{C \cdot 2^k}{(n)}$$

そこで、どんな小さな $\varepsilon(>0)$ についても、 番号nが $n > \frac{C \cdot 2^k}{\varepsilon}$ であれば $\frac{a^n}{\epsilon} < \varepsilon$

つまり

 $\{a^n/n!\}\$ は $0\$ に 収束する

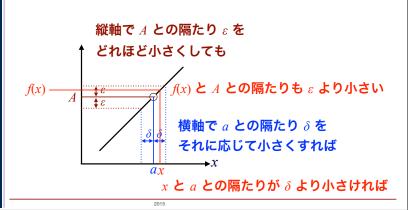
関数の極限

関数の極限

数列の収束と同じ論法を用いる

 $\lim_{x \to a} f(x) = A$

関数 f(x) の $x \rightarrow a$ の極限が A であるとは



関数の極限

どんなに小さな ε を考えても(ε > 0)

x と a との隔たりを δ より小さくすれば

f(x) と A の隔たりも ε より小さくできる

 $\forall \varepsilon > 0, \exists \delta > 0; 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$ $\varepsilon - \delta$ 論法

 ε も δ も、ただの正の数で、0ではないし、 0に「無限に」近づくわけでもない

最初の微分の例

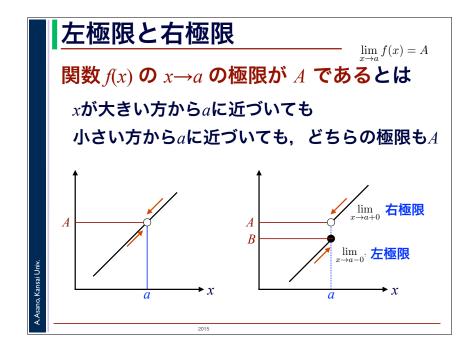
 $h \to 0$ と書いてあっても,

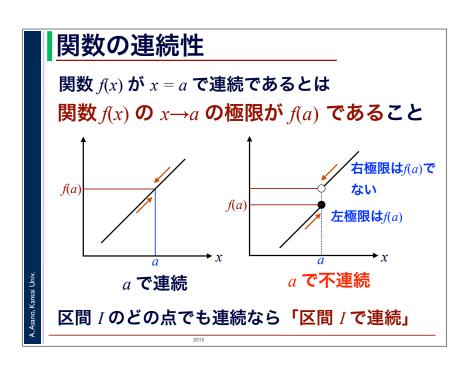
h はあくまで正の数で、Oではない

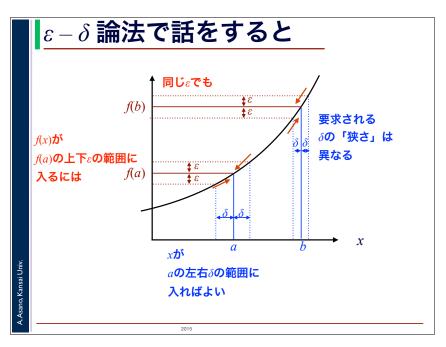
やっぱりh はゼロ ではなくて

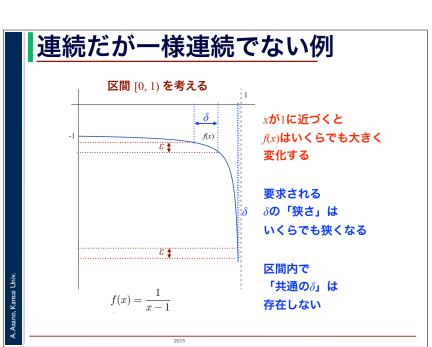
収束する先が h=0 を代入したときの値と同じ、というだけ

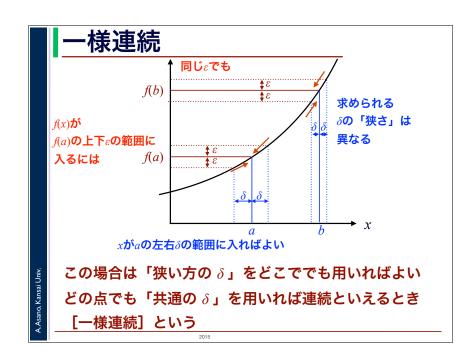
関数の「連続」と「一様連続」

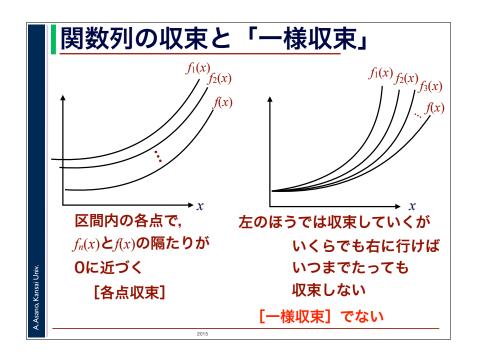












今日のまとめ

「限りなく近づく」とは, 「無限」ではない

求めに応じて 好きなだけ近くできること

sano, Kansai

2015