2025年度秋学期

応用数学(解析)

第2部・基本的な微分方程式 /

第5回

微分方程式とは・変数分離形

関西大学総合情報学部 浅野 晃

微分方程式とは◎

微分方程式とは

ふつうの方程式は、解は「数」 $x^2 - 5x + 3 = 0$

微分方程式は、解が「関数」で、その微分が含まれる方程式

xが tの関数(つまりx(t))のとき,

x' = x関数は「量の変化」

x'' - 5x' + 6x = 0 微分方程式は「変化の条件」

微分方程式を解くと、「どう変化するか」がわかる

1階·2階, 常微分·偏微分

1階導関数に関する微分方程式: x' = x

1階微分方程式

2階導関数に関する微分方程式: x'' - 5x' + 6x = 0

2階微分方程式

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃

1変数関数の微分方程式は常微分方程式 2変数以上の関数の偏微分に関する 微分方程式は偏微分方程式

微分方程式を解くとは

微分方程式を「解く」とは、 その方程式を満たす関数を見つけること

微分方程式は 特定のパターンのものしか解けない

解ける微分方程式のうち、簡単なものの基本的なパターンをいくつか紹介します。

25年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 5

微分方程式の例等

運動方程式

物体に働く力と、その運動との関係

カ_F

物体の質量 m

F = ma

物体の加速度 a

加速度は速度の微分,

速度は位置の微分だから,

時刻 t の物体の位置を x(t) とすると F = mx''

これを解いて関数 x(t) を求めると, 時刻 t での物体の位置がわかる

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃

落下の問題

物体が空気中を落下するとき

カF=下向きの重力 mg + 上向きの抵抗力

抵抗力は速度の2乗に比例する $-k(x')^2$

運動方程式は $\mathit{F} = \mathit{mx}^{"}$ なので $mg - k(x')^2 = mx''$

放射性物質の崩壊

崩壊の速度は、現在存在する物質の量に比例する

時刻 t の時点で存在する物質の量を x(t) とすると

$$x' = -kx$$

025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃

一般解·特殊解·特異解

一般解と特殊解

時刻 t の時点で存在する物質の量を x(t) とすると x' = -kx

定数 k が決まったら,解はひとつの関数に決まるか?

初期値という

決まらない

最初 t=0 に存在する物質の量x(0)が わからないと解はひとつに決まらない

一般解と特殊解

初期値が定まったときに求められる解を 特殊解(particular solution) という

初期値が定まっていないとき、 初期値を代入したらひとつの特殊解が求められるような形の解を 一般解(general solution) という

> 初期値が定まってはじめて決まる パラメータ

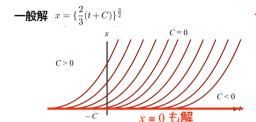
一般解の例: $x(t) = C \exp(-kt)$

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 見 11 ▮ 26

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 12 ▮ 26

特異解と解の一意性

$$x'=x^{rac{1}{3}}$$
 の一般解 $x=\{rac{2}{3}(t+C)\}^{rac{3}{2}}$ (C は定数)(なぜならば) $x'=rac{3}{2}\{rac{2}{3}(t+C)\}^{rac{1}{2}}\cdotrac{2}{3}$ $=\{rac{2}{3}(t+C)\}^{rac{1}{2}}=x^{rac{1}{3}}$



でも, x = 0 も解では?

一般解 $x = \{\frac{2}{3}(t+C)\}^{\frac{3}{2}}$ には Cをどう変えても含まれない

特異解(singular solution)という

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 13 ▮ 26

特異解と解の一意性

初期値がひとつ定まったときに、解がひとつだけに決まることを、 解が一意(unique)であるという

一意性の十分条件のひとつ「リプシッツ条件」

微分方程式が x'(t) = f(t,x) のとき. 初期値のまわりでどんな x_1, x_2 についても

$$|f(t,x_1) - f(t,x_2)| \le L|x_1 - x_2|$$

となる定数 L があるなら、その初期値について一意

「x のわずかな変化について. fがいくらでも大きく変化する、ということはない」くらいの意味

変数分離形(*)

変数分離形

$$x' = -kx$$
 を解く

$$rac{dx}{dt} = -kx$$
 と直す $x
eq 0$ として $rac{1}{x} rac{dx}{dt} = -k$ と変形する

両辺を
$$t$$
で積分 $\int \frac{1}{x} \frac{dx}{dt} dt = \int (-k) dt$

置換積分をする
$$\int \frac{1}{x} dx = \int (-k) dt$$

$$\int \frac{1}{x} dx = -\int k dt$$

積分を解く

$$\log |x| + C_1 = -kt + C_2$$
 C_1 , C_2 は積分定数 2025年度秋年間 足形象で保険力 / 同志大学総合情報学部 送野 男

変数分離形

$$x' = -kx$$
 を解く

積分を解く
$$\int \frac{1}{x} dx = -\int k dt$$

$$\log |x| + C_1 = -kt + C_2$$

$$\log |x| = -kt + (C_2 - C_1)$$

$$x = \pm \exp\{-kt + (C_2 - C_1)\}$$

$$x = \pm \exp(C_2 - C_1) \exp(-kt)$$

 $\pm \exp(C_2 - C_1)$ をあらためて定数 C とすると θ 一般解は $x(t) = C \exp(-kt)$

さっき $x \neq 0$ としたが、 $x \equiv 0$ も解で、一般解に含まれる。

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 17 ▮ 2

変数分離形

$$x' = -kx$$
 を解くとき, ふつうは

$$rac{dx}{dt} = -kx$$
 から $rac{dx}{x} = -kdt$ と,分数の計算のように変形し

$$\int \frac{1}{x} dx = \int (-k) dt$$
 と積分する

x が左辺、t が右辺に分離しているので、変数分離形という

025年度秋学期 広用数学(解析) / 関西大学総合情報学部 浅野 晃 18 ▮ 2

変数分離形

一般には
$$g(x)x' = f(t)$$

$$x' = rac{dx}{dt}$$
とすると $g(x)dx = f(t)dt$

両辺それぞれを積分すると
$$\int g(x)dx = \int f(t)dt + C$$

一般解に含まれる積分定数 C は、 初期値を代入して定まり、特殊解が得られる 例題 🦓

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 見 19 ▮ 26

例題

 $9x \cdot x' + 4t = 0$ を解いて 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。

$$x'=rac{dx}{dt}$$
として変数分離すると $9xdx=-4tdt$

両辺それぞれを積分すると
$$\frac{9}{2}x^2 = -2t^2 + C_0$$

すなわち
$$rac{t^2}{9} + rac{x^2}{4} = C_1$$
 ($t-x$ 平面の楕円群)

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 21 ▮ 26

テキストの演習問題からひとつ6

例題

 $9x \cdot x' + 4t = 0$ を解いて 一般解を求めよ。 x(3) = 2 とするときの特殊解を求めよ。

一般解は
$$\frac{t^2}{9} + \frac{x^2}{4} = C_1$$

初期値が x(3) = 2 なので t = 3 のとき x = 2 だから,代入すると $C_1 = 2$

特殊解は
$$\frac{t^2}{9} + \frac{x^2}{4} = 2$$

025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 22 2

演習問題(1)

微分方程式 $x'=3t^2x$ について

x(0) = 1 とするときの特殊解を求めよ。

$$x' = \frac{dx}{dt}$$
 とすると $\frac{dx}{dt} = 3t^2x$, すなわち $\frac{dx}{x} = 3t^2dt$ と変数分離できる

両辺それぞれを積分すると

$$\int \frac{dx}{x} = \int 3t^2 dt$$
, すなわち $\log |x| = t^3 + C$ (C は定数)

2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 24 1 26

演習問題(1)

微分方程式 $x' = 3t^2x$ について

x(0) = 1 とするときの特殊解を求めよ。

 $\log |x| = t^3 + C$ より $x = \pm e^C e^{t^3}$ (C は定数)

よって、 $\pm e^C$ をあらためて定数 A とおくと、一般解は $x = Ae^{t^3}$

初期値はx(0) = 1なので、t = 0、x = 1を代入すると1 = A

よって、求める特殊解は $x = e^{t^3}$

今日のまとめ

微分方程式は、関数とその微分に関する方程式 解は数ではなく関数

解ける方程式のパターンは限られている

もっとも基本的なパターン「変数分離形」

阿西大学総合情報学部 浅野 見 25 1 26 2025年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 見 20