2025 年度秋学期 応用数学(解析) 第7回演習の解答例

- 1. 特性方程式は $\lambda^2 2\lambda 3 = 0$ で,これを解くと $\lambda = 3, -1$ です。よって,一般解は $x(t) = C_1 e^{3t} + C_2 e^{-t}$ (C_1, C_2 は任意の定数)となります。初期条件は $x(0) = C_1 + C_2 = 0$, $x'(0) = 3C_1 C_2 = 4$ ですから,これらから $C_1 = 1$, $C_2 = -1$ が得られます。よって求める特殊解は $x(t) = e^{3t} e^{-t}$ です。 ■
- 2. 特性方程式は $\lambda^2+1=0$ で、これを解くと $\lambda=\pm i$ です。よって、一般解は $x(t)=C_1\cos t+C_2\sin t$ (C_1,C_2 は任意の定数)となります。初期条件は $x(0)=C_1\cos(0)+C_2\sin(0)=C_1=1$ 、 $x'(0)=C_1(-\sin(0))+C_2\cos(0)=C_2=1$ で、求める特殊解は $x(t)=\cos t+\sin t$ です。
- 3. 特性方程式は $\lambda^2 4\lambda + 4 = 0$ で、これを解くと $\lambda = 2$ (重解)となります。よって、一般解は $x(t) = C_1 e^{2t} + C_2 t e^{2t}$ (C_1, C_2 は任意の定数)となります。初期条件は $x(0) = C_1 = 0$, $x'(0) = 2C_1(e^{(2\cdot0)}) + C_2(e^{(2\cdot0)} + 2\cdot 0\cdot e^{(2\cdot0)}) = 2C_1 + C_2 = 1$ ですから、求める特殊解は $x(t) = t e^{2t}$ となります。 ■