このように,ある関数の対数の微分が簡単に計算できるとき,対数微分法は有効です.なぜならば,「対数をとる」という操作は,「指数をかけ算に,かけ算をたし算に」変えてくれるからです.
l'Hospitalの定理は,(f(x) / g(x))の極限が 0/0の不定形となってしまうときには,かわりに(f'(x) / g'(x))の極限を求めればよい,という便利な定理です.
l'Hospitalの定理は,Rolleの定理→平均値の定理→Cauchyの平均値の定理を経て導かれます.