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Abstract A novel method of the multiprimitive texture analysis is proposed. This
method segments a texture using the watershed algorithm into frag-
ments each of which contains one grain. The size density function of
each fragment is calculated, and the fragments are located in the fea-
ture space each of whose basis is the size density of a size. The shape
of each grain is distorted by the segmentation if the grains overlap, and
the watershed algorithm may cause the over-segmentation. Thus the
fragments containing grains corresponding to one primitive scatter in
the feature space. However, the following cluster analysis collects neigh-
borhood fragments in the feature space into a cluster. The grains in a
cluster are regarded as corresponding to one primitive. The number of
distinctive primitives shapes is obtained as the number of distinctive
clusters, and each primitive is obtained as the central fragment of each
cluster.
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1. Introduction

Texture recognition and discrimination are important aims of image process-
ing, as well as object shape recognition in images. A lot of texture analyzing
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methods have been proposed, and the texture classification and segmentation
are main objectives among them. The texture classification and segmentation
requires characterization of textures, i.e. evaluation of features describing local
or global characteristics of the target texture.

According to [1], the texture characterization approaches can be divided into
four categories: statistical, geometrical, model-based and signal processing. We
have recently investigated several approaches that are categorized into geomet-
rical ones [2][3]. The geometrical approach considers a texture to be composed
of primitives, and attempts to describe the shapes of primitives. We applied
the concept of morphological size distribution [4][5] to the primitive descrip-
tion. We assumed a distribution of grain sizes in a texture. For example, we
assume that the target texture contains grains whose shapes are homothetic to
one primitive and whose sizes are uniformly distributed. In this case, the size
density function relative to such structuring element that is homothetic to the
primitive will be uniform. We employed the simulated annealing for finding
the optimal structuring element that makes the size density function uniform.

Our method above, as well as other geometrical approaches [6], assumes that
the target texture, or the target area of texture, is composed of one primitive.
These approaches are not applicable to the multiprimitive texture, which is
composed of two or more distinctive primitives. Sand and Dougherty [7][8]
have proposed several methods to analyze multiprimitive textures using the
granulometric moments. Their approach estimates the mixture proportion and
sizing parameters of primitives with the assumption that the shapes of prim-
itives and their size density functions are known. We propose, in this paper,
a method of extracting typical primitive shapes of multiprimitive textures in
case that neither the size densities of primitives, mixture proportion, nor sizing
parameters are known. This method at first segments a texture by the water-
shed algorithm into the fragments each of which contains one grain. The size
density function of each fragment is calculated, and the fragments are located
in the feature space each of whose basis is the size density of a size. The shape
of each grain is often distorted by the segmentation if the grains overlap, and
the watershed algorithm may cause the over-segmentation. Thus the fragments
containing grains corresponding to one primitive scatter in the feature space.
However, the following cluster analysis collects neighborhood fragments in the
feature space into a cluster. The grains in a cluster are regarded as correspond-
ing to one primitive. The number of distinctive primitives shapes is obtained as
the number of distinctive clusters, and each primitive is obtained as the central
fragment of each cluster.

2. Method

Our method consists of the following four steps. We consider textures that
consist of grains. Such a texture as a repeated pattern like woven textiles is
out of our scope.
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2.1 SEGMENTATION

To segment a texture into the fragments each of which contains one grain, we
find the center of each grain at first. The distance transformation is applied
for this purpose. The distance transformation assigns the distance from the
outline to each pixel inside a white-pixel object in a binary image. If a distance
transformed object is convex, the maximum of distance transform is the con-
nected set of central pixels in this object; Otherwise two or more separate local
maxima are found in the object, and each of them is the center of each convex
part yielded by dividing the original object. We apply the distance transfor-
mation to the suitably binarized target texture, and pick up the local maxima
of the distance transform. We find the centers of grains by this operation.

We draw boundaries between the fragments using the watershed algorithm
[9] with the center pixels obtained above. The watershed algorithm obtains
the boundaries by tracking local minima as if the water tracked the valley in
terms of regarding the distance transforms as the heights from the ground. The
boundaries segment the texture into the fragments each of which contains one
grain.

Figure 1 and 2 shows an example; Figure 1 is the target binary texture.
We apply the distance transformation, the extraction of local maxima, and
the watershed algorithm, and then obtain the boundaries as shown in Fig. 2.
Since the watershed algorithm segments an object into convex parts, overlapped
grains are divided into each grain. This segmentation, however, divides one
original grain into two or more fragments in some cases. The over-segmentation
problem will be compensated by the following cluster analysis.

Figure 1.  An example texture. Figure 2. Result of segmentation.

2.2 SIZE DISTRIBUTION AND LOCATION OF FRAGMENTS IN THE
FEATURE SPACE

We calculate the morphological size distribution of each fragment using a cer-
tain structuring element. The size density function of discrete size r for the
image object X relative to the structuring element B, denoted px g(r), is de-
fined as follows:

px.p(r) = A(X );(1;1(())((7’+1)B)7 (1)
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where A(X) denotes the area of X, Xp denotes the morphological opening
of X by B, and rB is the r—times homothetic magnification of B, defined as
follows:

rB=B®B®...B ((r —1)— times of ®). (2)
0B = {0}. (3)

where & denotes the Minkowski set addition. The size density function of size
r indicates the relative residual area that is contained in the opening X, g but
not contained in X, 1)p-

Each fragment is located in the feature space whose basis consists of the size
density function of several sizes. Figure 3 shows an example of the location.
The shape of structuring element is the 3 x 3-pixel square in this example. The
feature space is two dimensional, where the horizontal coordinate corresponds
to size r = 0 and the vertical one corresponds to size r = 4. Each point denoted
by the symbol “x” in the space corresponds to each fragment.

2.3 CLUSTERING

We employ the hierarchical clustering in our method, and illustrate the hier-
archy by a dendrogram. We at first select the closest point pair in the feature
space, and create the initial cluster of this pair. The selected points are ar-
ranged on the horizontal coordinate of the dendrogram, and a vertical line is
drawn upward from each point to the height corresponding to the distance be-
tween these points in the feature space. The two vertical lines are connected
at the tops to indicate the relationship between the two points. The hierarchy
of clusters is constructed by the iteration of the followings:

1) Selecting the point-point pair, point-cluster pair or cluster-cluster pair
whose distance is currently the smallest of all the pairs that have not selected
yet. The distance of a point-cluster pair is defined as the smallest distance
between the point outside the cluster and a point in the cluster, and the distance
of a cluster-cluster pair is defined as the smallest distance between a point in
one cluster and a point in the other cluster.

2) Creating the cluster of the selected pair. The tree structure of the den-
drogram is drawn in the same manner as the initial cluster.

These steps are iterated until the largest cluster containing all the points is
created. Figure 4 shows the hierarchy of the clusters created from the example
of Fig. 3.

2.4 SEPARATION OF CLUSTERS AND EXTRACTION OF PRIMITIVES

Dividing the hierarchy into several clusters that are significantly distant, we
obtain the clusters each of which contains the grains corresponding to a distinct
primitive. Since the dendrogram indicates the distances between the clusters
as the heights on the vertical axis, this division is equivalent to cutting the
dendrogram at a height, as shown by the dashed line in Fig. 4. In this case we
find that the texture contains two distinct clusters, i.e. two distinct primitives.
The obtained clusters, denoted C; and Cs, correspond to the ovals C; and Cs
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shown in Fig. 3, respectively. We find the typical primitive shapes by extracting
the grains in the typical fragments, each of which corresponds to the point
closest to the centroid of each cluster in the feature space. Figure 5 shows the
extracted primitives in this case. The fragments corresponding to a common
primitive scatter in the feature space because of the original variability of the
grains as well as the segmentation error like the over-segmentation. However,
the typical primitive is extracted since the variability is compensated by the
collection of scattering points into a cluster and each of the typical grains,
which resemble the primitives, situates closest to the centroid of each cluster
in the feature space.
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Figure 5.  Extracted primitives.

3. Experiment

We carried out an experiment of this method using a practical texture. Figure
6 shows an example of a practical texture, which is already binarized. This is
a mixture of two primitives, a rice grain and a plastic bead. This texture is
segmented into fragments as shown in Fig. 7. It is found that some beads are
over-segmented. Figure 8 shows the feature space, whose basis is the set of size
densities of size 0 and 4 relative to the 3x3-pixel square structuring element.
The basis is selected manually in the current experiment for obtaining clear
cluster discrimination in our experiment. Figure 9 shows the dendrogram,
which is divided into two clusters C; and Cs. Figure 10 shows the typical
grains extracted from the two clusters. A typical rice grain (a) and a typical
bead (b) are successfully extracted as the primitives.

Figure 6. An example texture. Figure 7. Segmentation result.

4. Conclusions

In this paper, we have proposed a novel method of the multiprimitive texture
analysis. This method consists of the following procedures: 1) segmenting a
texture by the watershed algorithm into the fragments each of which contains
one grain, 2) calculating the size density function of each fragment, 3) locating
the fragments in the feature space whose basis is the size density of each size, 4)
creating distinctive clusters of the points in the feature space, and 5) extracting
the fragment closest to the centroid of each cluster in the feature space. The
extracted fragments have typical grains corresponding to the primitives. Since



Multiprimitive texture analysis using cluster analysis 115

200

150

size 4
.
i)

100F _-.

150

0 5‘0 160 1éo
size 0

Figure §.  Feature space.

cutting line

distance

fragments

Figure 9.  Dendrogram.
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Figure 10.  Extracted primitives.

the grain shape may be distorted by the segmentation, the fragments contain-
ing the grains corresponding to one primitive scatter in the feature space. The
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following cluster analysis creates clusters of neighboring fragments in the fea-
ture space and each primitive is obtained as the grain in the fragment closest
to the centroid of each cluster.

We have selected the sizes for the basis of the feature space manually for
obtaining clear cluster discrimination in our current experiment. It is an im-
portant problem how to construct the basis. One idea is constructing the basis
using the size density function of all the sizes at first, and then reducing the
dimension of the feature space by some statistical method. We are now working
on this. Moreover, the examination of the robustness against noises and grain
overlapping should be our future work.
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