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Abstract—A method of optimizing structuring elements
of morphological openings for extracting structures of tex-
ture image is proposed. This method can adopt the structur-
ing element to the microstructure of a texture image, even
if it is corrupted by noise. This method is based on the
property of the texture that it is composed of a repetitive ap-
pearance of the microstructure. The extraction ability from
noisy images is improved by introducing limitations to the
variance of the pixel values within the structuring element
in the process of optimization, and iterating the optimiza-
tion with modifying the size of the structuring element. As
an example of the application, the effective noise removal
is achieved by the opening using the estimated shape of the
microstructure as the optimal structuring element.

1. Introduction

Opening is one of the most important image operations
in the context of mathematical morphology [1–3]. Opening
presents the composition of an image by the repetitive ar-
rangement of a structuring element, which is a small object
used as a probe. The significance of opening is its quantita-
tiveness in the sizes of image objects. For example, a quan-
titative noise removal in images is achieved by opening in
the sense that noise objects smaller than the structuring el-
ement are removed exactly.

Since the shape of structuring element appears directly
in the result of opening, the opening using the structuring
element resembling objects contained in the target image
preserves the visual appearance of the whole image. Of
course it is not generally possible to determine one typical
object resembling various objects contained in an image.
However, if the target image is restricted to a texture, we
can derive a typical object representing the whole texture.

The shape of repetitively appearing objects in a texture
should be preserved by the optimal opening for texture
characterization, since this is the fundamental characteris-
tic for representing the visual appearance of the target tex-
ture. In the case that opening is applied for noise removal,
a structuring element not resembling the repetitively ap-
pearing objects causes in the output image undesired mi-
crostructures which are not related to the original image.

The optimal opening described above is achieved by using
this typical object as the structuring element.

Such structuring element can be estimated by using
“Primitive, Grain, and Point Configuration (PGPC)” tex-
ture model [4] which we have proposed as a model of tex-
ture description. The PGPC texture model regards a texture
as an image composed by a regular or irregular arrange-
ment of grains that are much smaller than the size of image
and resemble each other, and presents a method of estimat-
ing the fundamental object, called primitive, from which
the grains are derived by a certain modification.

We propose in this paper a novel optimization method
which can estimate the primitive even if the target texture
is corrupted by noise. It utilizes the a priori knowledge that
the extent of noisy pixels is smaller than the original mi-
crostructure of textures, and introduces limitations on the
shape of structuring elements based on this knowledge in
the process of optimization.

We show an experimental result of an application of the
proposed method for noise removal from texture images.
In our previous work [5], we proposed an optimization
method of gray scale opening for noise removal of texture
images using the primitive estimation based on the PGPC
texture model. The previous method, however, requires an
example of the noise-free image of the target corrupted tex-
ture. It does not need to be the exact noise-free version of
the target corrupted texture because of the characteristics
of the textures described above, but should be at least a dif-
ferent uncorrupted realization of the texture which has the
same microstructure as the target corrupted image.

The estimation method proposed in this paper can opti-
mize the structuring element for noise removal without any
noise-free example, since the proposed method can esti-
mate the texture primitive from a noisy texture image. The
experiment shows that the proposed method is as effective
as the method using the noise-free example.
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2. PGPC texture model and basic primitive estimation
procedure

2.1. Morphological size distribution

Opening of image X with respect to structuring element
B means residue of X obtained by removing smaller struc-
tures than B. It indicates that opening works as a filter to
distinguish object structures by their sizes. Let 2B, 3B, . . . ,
be homothetic magnifications of the basic structuring ele-
ment B. We then perform opening of X with respect to the
homothetic structuring elements, and obtain the image se-
quence XB, X2B, X3B, . . . . In this sequence, XB is obtained
by removing the regions smaller than B, X2B is obtained by
removing the regions smaller than X2B, X3B is obtained by
removing the regions smaller than 3B, . . . . If B is convex,
it holds that X ⊆ XB ⊆ X2B ⊆ X3B ⊆ . . . . This sequence of
opening is called granulometry [3].

We then calculate the ratio of the area (for binary case) or
the sum of pixel values (for gray scale case) of XrB to that
of the original X at each r. The area of an image is defined
by the area occupied by an image object, i. e. the number
of pixels composing an image object in the case of discrete
images. The function from a size r to the corresponding
ratio is monotonically decreasing, and unity when the size
is zero. This function is called size distribution function.
The size distribution function of size r indicates the area
ratio of the regions whose sizes are greater than or equal to
r.

2.2. PGPC texture model

The PGPC texture model regards a texture as an image
composed by a regular or irregular arrangement of objects
that are much smaller than the size of image and resemble
each other. The objects arranged in a texture are called
grains, and the grains are regarded to be derived from one
or a few typical objects called primitives. This model is
based on the observation, suggested by Gestalt psychology,
that a repetitive appearance of similar objects of a moderate
size is organized to be a meaningful structure by the human
cognitive process.

We assume here that the grains are derived from one
primitive by homothetic magnification.We also assume that
the primitive is expressed by a structuring element B, and
let X be the target texture image. In this case, XrB is re-
garded as the texture image composed by the arrangement
of rB only. It follows that rB− (r+1)B indicates the region
included in the arrangement of rB but not included in that
of (r+1)B. Consequently, XrB−X(r+1)B is the region where
r-size grains are arranged if X is expressed by employing
an arrangement of grains which are preferably large magni-
fications of the primitive. The sequence X − XB, XB − X2B,
. . . , XrB − X(r+1)B, . . . , is the decomposition of the target
texture to the arrangement of the grains of each size.

2.3. Basic primitive estimation procedure

Since the sequence can be derived by using any struc-
turing element, it is necessary to estimate the appropriate
primitive that is a really typical representative of the grains.
We employ an idea that the structuring element yielding the
simplest grain arrangement is the best estimate of the prim-
itive, similarly to the minimum description length (MDL)
principle [6]. The simple arrangement locates a few num-
ber of large magnifications for the expression of a large
part of the texture image, contrarily to the arrangement of
a large number of small-size magnifications. We derive the
estimate by finding the structuring element minimizing the
integral of 1−F(r), where F(r) is the size distribution func-
tion with respect to size r. The function 1 − F(r) is 0 for
r = 0 and monotonically increasing, and 1 for the maxi-
mum size required to compose the texture by the magnifica-
tion of this size. Consequently, if the integral of 1 − F(r) is
minimized, the sizes of employed magnifications concen-
trate to relatively large sizes, and the structuring element
in this case expresses the texture using the largest possible
magnifications. We regard this structuring element as the
estimate of primitive.

We estimate the gray scale structuring element in two
steps: the shape of structuring element is estimated by the
above method in the first step, and the gray scale value at
each pixel in the primitive estimated in the first step is then
estimated. However, if the above method is applied to the
gray scale estimation, the estimate often has a small num-
ber of high-value pixel and other pixels whose values are
almost zero. This is because the umbra of any object can
be composed by arranging one-pixel structuring element.
This is absolutely not a desired estimate. Thus we mini-
mize 1 − F(1), i. e. the residual area of XB instead of the
above method. Since the residual region cannot be com-
posed of even the smallest magnification, the composition
by this structuring element and its magnification is the most
admissible when the residual area is the minimum.

The exploration of the structuring element can be per-
formed by the simulated annealing, which iterates a mod-
ification of the structuring element and find the best esti-
mate minimizing the evaluation function described in the
above [4].

3. Primitive estimation from corrupted image

The primitive estimation method described in the previ-
ous section has been developed for noiseless texture im-
ages. If it is applied for texture images corrupted with
noise, it does not work well, since noisy pixels are incorpo-
rated to the estimation and the estimated primitive includes
undesired noisy pixels.

To avoid this problem and achieve the estimation from
corrupted image, we introduce the following two modifi-
cation into the estimation procedure: 1) Limitation of the
variance within the structuring element, and 2) Iterative
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estimation with reducing the extent of the structuring el-
ement.

3.1. Limitation of the variance within the structuring
element

The extent of noisy pixels is usually small, and the pixel
values are often significantly different from the neighbor-
hood pixel values of the noiseless image. Thus the primi-
tive estimated from noisy images often has a pixel whose
value is significantly and unnaturally different from the
other pixels. To avoid the problem, the variance of the pixel
values within the structuring element is limited in the opti-
mization procedure.

A structuring element is generated at each iteration by
the modification to the structuring element at the previous
iteration. If the variance of the pixel values is larger than
the threshold, this structuring element is discarded and an-
other structuring element is newly generated. The thresh-
old is relatively large at the beginning of the procedure to
allow a large variance, and decreases along the progress of
simulated annealing to make the structuring element con-
verge to the appropriate one.

3.2. Iterative estimation with reducing the extent of the
structuring element

The extent of the estimated primitive is important when
the primitive is used as the structuring element for opening.
The smaller the extent is, the higher the ability of preserv-
ing the details of the image is, but the lower the ability of
noise removal is. Thus we introduce an iteration of the es-
timation with reducing the extent of the primitive, to find
the optimal extent.

After the initial estimation, the primitive is estimated
again using the opened noisy image by the previously es-
timated primitive and reducing the extent of the primitive
and the limitation of the variance. These estimations are
iterated to obtain the final estimate.

4. Experiments

4.1. Parameter settings

We use 8-bit gray scale texture images of 64× 64 for the
experiments. Example texture images are shown in Fig. 1.

The estimation by simulated annealing has a parameter
called temperature that controls the probability where the
modification of structuring element is accepted even if the
evaluation function is increased by this modification. The
temperature at the ith iteration in one optimization process,
denoted Ti is defined so that acceptance probability P(∆IF)
is as follows:

P(∆IF) =
1

1 + exp(∆IF
Ti

)
, (1)

(a) (b)

Figure 1: Example images used for the experiment.

where ∆IF is the increment of the evaluation function. The
initial temperature T0 is determined by setting the accep-
tance probability P at the initial state to 0.35 and the fol-
lowing calculation:

T0 =
∆IF

log( 1
P − 1)

. (2)

The temperature decreases following the iteration, as fol-
lows:

Ti+1 = 0.98Ti. (3)

The number of iteration is fixed to 1000 times in our exper-
iments.

The initial structuring element is set to the cross-shaped
one of 9 pixels, and the initial pixel values are set to 50 at all
the pixels. The number of pixels is fixed to 9 at the initial
estimation, and the estimation procedures are repeated with
decreasing the number of pixels by one, and the estimate
where the number of pixels is 5 is regarded as the final
estimate of the primitive. The final number of pixels is set
to 5 based on a preliminary experiment. The threshold used
for the limitation of variance is set to 500 when the number
of pixels is 9, and decreases by 100 as the number of pixel
decreases by one.

4.2. Results of optimization

We show here experimental results for noisy images cor-
rupted by impulsive noise of positive values to present the
effectiveness of the optimized opening. The pair of Fig. 1
(a) and (b) is extractions of different parts from the same
texture. Corrupted images are generated by selecting 1000
pixels randomly in Fig. 1 (a) and adding random positive
values to the selected pixels. If the noisy pixel value is
larger than 255, it is replaced with 255.

Figure 2 shows the result of noise removal from the
corrupted image generated from Fig. 1 (a). The estima-
tion was tried five times, and the best results are shown
here. The results by the opening optimized by our previous
method [5] using noncorrupted images, and median filter,
switching median filter, PSM filter [7] as typical image fil-
ter for impulsive noise, are shown for comparison. Figure
1(b) is used for the estimation by our previous method. The
thresholds for the switching median filter and PSM filter
are determined to yield the best results by repetitive exper-
iments.

The mean-square-error in comparison with the original
image (a) is shown at each image in Fig. 2. These results
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our method
MSE = 272

previous method 
(5 pixels)

MSE = 321

previous method 
(9 pixels)

MSE = 678

median filter
MSE = 659

switching median 
filter

MSE = 564

PSM filter
MSE = 507

corrupted image
MSE = 2565

Figure 2: Results by the optimal opening for the noisy im-
age generated from Fig. 1(a).

show that the proposed method has achieved the equivalent
ability of the structure extraction and noise removal to our
previous method without noncorrupted example images.
They also show that our optimized opening has higher abil-
ity than the typical noise removing filters. It suggests that
these typical filters degrade microstructures in texture im-
ages.

5. Conclusions

This paper has proposed the optimization method of
morphological opening for extracting textural structures
from noisy texture images. This method achieves the op-
timization with the target noisy image only and without
any noncorrupted example by introducing an appropriate
restriction. It is shown by an experiment of impulsive noise
removal in texture images that the method is more effective
than typical noise removing filters.

The purpose of our method is currently limited to the
extraction of structures in texture images. The fundamental
characteristic of the texture used in this method is, however,
that the image is composed by the repetitive appearance of
similar grains derived from a primitive, which is described
by the PGPC texture model. It indicates that the method
can be applied to general images other than textures, if the
images can be transformed to those having the property.
We are now working on this.
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