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Abstract—An analysis method of the effect of the viewing
distance in texture perception using morphological and statistical
model is proposed. Texture perception has been an area of interest
for many researchers. However, the effect of the viewing distance
which is an essential issue in texture discrimination is still an open
problem. In this paper, we synthesized textures by controlling
local and global textural features separately using a texture
model based on mathematical morphology, namely the PGPC
texture model. Visual sensory tests were carried out on thirty-two
respondents in four experiments. The collected data was analyzed
using the logistic regression model. The experimental results
indicate that the viewing distance and the mutual interactions
of local and global features of a texture have significant effects
on human perception. Other factors such as prior knowledge and
the order of the viewing positions influence human perception in
texture discrimination. This study contributes to the construction
of the numerical relation between the viewing distance and
human texture perception.

I. INTRODUCTION

Texture classification and discrimination are among the
main topics of image analysis. Various methods of texture
analysis, for example the co-occurrence matrix method and
the spatial frequency method, have been proposed [1], [2].
Texture characteristics measurements, which are the main aims
of the above popular methods, are often employed for tex-
ture classification and discrimination. Many psychologist and
computer vision researchers have studied texture perception
in order to find the most salient texture properties in texture
discrimination [3], [4], [5]. Many textural features such as con-
trast, coarseness, regularity, directionality, etc. have been used
to build texture models which mimic human visual system.
However, the researchers do not have a common idea on which
features should be adopted and how they should be defined
and measured. Research in human perception has suggested
that the viewing distance between some scenes and observers
have some interesting effects on human visual impressions.
Artists have created visual illusions such as picture mosaics
and hybrid images. These images consist of two different
interpretations that can be perceived by changing the viewing
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distance. A mosaic picture was achieved by using tiny pictures
as mosaics to compose another global picture [6]. A hybrid
image was generated by superimposing a low-pass filtered
image and a high-pass filtered image [7]. However, the artists
have mainly focused on the artistic effects and the techniques
of creating the illusions rather than building computational
models. Morioka et al. have constructed a mathematical model
for geometrical characteristics from multiple images which
were captured from various distances of a natural fabric texture
[8]. Caputo et al. addressed the robustness of scale variations
in material classification [9]. However,the numerical relation
between the viewing distance and human perception is still an
open problem.

In our previous research, we have proposed a model for
texture description based on morphological operations [10],
[11], [12], called “Primitive, Grain and Point Configuration
(PGPC)” texture model [13]. The PGPC texture model regards
a texture as an image composed by a regular or irregular
arrangement of objects that are much smaller than the size of
image and resemble each other. The objects arranged in a tex-
ture are called grains, and the grains are regarded to be derived
from one or a few typical objects called primitives. The point
configuration of the grains is expressed by a morphological
skeleton [11]. The PGPC texture model has provided a method
that local and global features can be modified separately. We
applied binary texture manipulation based on the PGPC texture
model to investigate human perception in binary textures [14].
It showed not only a respective influence of a local structure
and the entire structure of the texture but also their mutual
interactions are important for the identification of human
visual impression. This conclusion also has been proved in
the gray scale case [15].

In this paper, we synthesize textures by controlling local
and global textural features separately using the PGPC texture
model. This allows the synthesized textures to contain two
interpretations. The visual perception may change by changing
the viewing distance. We carry out visual sensory tests on four
groups of respondents in two sets of experiments. In order to
construct a statistical relationship between the viewing dis-
tance and human perception, we adopt the logistic regression
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to analyze the data obtained from human respondents.
The experimental results indicate that the viewing distance

and the mutual interactions of local and global features of a
texture have significant effects on human perception. Other
factors such as prior knowledge and the order of the viewing
positions influence human perception in texture discrimination.
This study contributes to the construction of the numerical
relation between the viewing distance and human texture
perception.

II. MATHEMATICAL MORPHOLOGY AND
MORPHOLOGICAL SKELETON

In the context of mathematical morphology [10], [11], [12],
an image object is defined by a set. In the case of binary
images, this set refers to the pixel positions included in the
object. In the case of gray scale images, an image object is
defined by an umbra set. If the pixel value distribution of an
image object is denoted as f(x), where x ∈ Z

2 is a pixel
position, its umbra U [f(x)] is defined as follows:

U [f(x)] = {(x, t) ∈ Z
3| −∞ < t ≤ f(x)}. (1)

Consequently, when we assume a “solid” whose support is
the same as a gray scale image object and whose height at each
pixel position is the same as the pixel value at this position,
the umbra is equivalent to this solid and the whole volume
below this solid within the support.

Another object, called structuring element, is defined in the
same manner. The structuring element is equivalent to the
window of an image processing filter, and supposed to have
much smaller extent than the image object.

In mathematical morphology, opening is a fundamental
operation. In the case of the binary image and structuring
element, the opening of an image object X with respect
to a structuring element B, denoted XB , has the following
property:

XB = (X � B̌) ⊕ B, (2)

where � denotes Minkowski set subtraction, ⊕ denotes
Minkowski set addition, B̌ denotes the symmetrical set of B
with respect to the origin.

The Minkowski set subtraction and the Minkowski set
addition are defined as follows:

X � B =
⋂

b∈B

Xb, (3)

X ⊕ B =
⋃

b∈B

Xb, (4)

where Xb indicates the translation of X by b, defined as
follows:

Xb = {x + b, x ∈ X}. (5)

In the case of the gray scale image and structuring element,
the opening is similarly defined by replacing the sets X and
B with their umbra.

The skeleton SK(X,B) is defined as follows:

SK(X,B) =
N⋃

n=0

SKn(X,B), (6)

SKn(X,B) = (X � nB̌) − (X � nB̌)B , (7)

where nB is n-times homothetic magnification of B defined
as follows:

nB = B ⊕ C ⊕ . . . ⊕ C ((n − 1) − times of ⊕), (8)

0B = 0, (9)

where C is another small structuring element. This definition
is different from the usual one, however, we employ this def-
inition to avoid the inconvenience that the difference between
nB and (n + 1)B is too large for large B in the original
definition.

The gray scale image composed by assigning a pixel value
n to the pixels in SKn(X,B) is referred to as the medial
axis transform. The original binary image is reconstructed by
locating nB on every pixel of SKn(X,B) and calculating the
union of all n. It indicates that SKn(X,B) is regarded as the
grain location configurations of the texture X if we assume
that B is the estimated primitive and nBs are the grains.

III. PGPC TEXTURE MODEL

PGPC texture model [13] represents a texture image X as
follows:

X =
N⋃

n=0

Bn ⊕ Φn, (10)

for nonempty Φn, where Bn denotes a grain, and Φn is point
configuration, that is a set indicating pixel positions to locate
the grain nB.

We assume here that {0B, 1B, . . . , nB, . . .} are homothetic
magnifications of a small object B as defined in (8) and (9),
and that Bn in (10) is equivalent to nB for each n. In this case,
B is regarded as the primitive and n is referred as the size
of the magnification, XnB is regarded as the texture image
composed of the arrangement of nB only. Texture X can be
synthesized by adopting the union of XnB .

IV. METHODS AND EXPERIMENTS

A. Texture synthesis
The textures used in our experiments were synthesized by

controlling local and global parameters separately using the
PGPC texture model. We have considered that the primitive
or the grains of a texture show some local features, whereas
the skeleton of a texture and the grain size distribution show
some global features [16].

The synthesized textures and their skeletons and grains are
shown in Fig. 1. The skeleton of texture 1 was created with
horizontal directional strength, and the skeleton of texture 2
was created with diagonal directional strength. These skeletons
have the same density and distributing properties. The grains
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(a) (b) (c)

(d) (e) (f )

Fig. 1. Synthesized textures: (a) Skeleton of texture 1, (b) Grain of texture
1, (c) Synthesized texture 1, (d) Skeleton of texture 2 (e) Grain of texture 2,
and (f) Synthesized texture 2.

A B

Fig. 2. The first scene used in the experiments.

of texture 1 and texture 2 enhanced the directionality in
their respective synthesized textures. However, they represent
different local features.

B. Visual sensory tests

The synthesized textures were cropped into discs in order to
reduce the psychological effect of the horizontal and vertical
borders of the texture frames.

Two groups of textures were used in the experiments. The
textures in each group were presented in one scene. The two
groups of textures were arranged in two scenes shown in Fig.
2 and Fig. 3. Three textures were included in each group: a
standard texture, candidate texture A, and candidate texture
B. The diameter of the textures is approximately two fifth of
the scene height. In the first group, candidate texture A is the
synthesized texture 1, candidate texture B is the synthesized

A B

Fig. 3. The second scene used in the experiments.

texture 2, and the standard texture was derived from rotating
the synthesized texture 2 forty-five degrees anticlockwise. The
textures in the second group are twice the local magnifications
of the respective textures in the first group.

Thirty-two respondents participated in two sets of experi-
ments, sixteen in each set. All the respondents had normal or
corrected-to-normal vision. The scenes were displayed on a
15-inch 4:3 LCD monitor.

In the first set of experiments, sixteen respondents were
separated into two groups, eight in each group. The first
group called unsupervised-group that the respondents in this
group have not been informed with any prior information.
The second group called supervised-group that in advance of
the experiments, a brief explanation of global directionality
and local grain feature was given to the respondents. The
respondents in both groups were asked to sit and look at
the monitor from the same distance as the height of the
screen. The two scenes of textures were displayed respectively.
Within each scene, the respondents were asked to select from
candidate texture A and candidate texture B, which texture
is more similar to the standard texture. After the respondents
made their decisions of both scenes, they were asked to move
back to the distance of twice, three times, and four times as
the height of the screen in order. In each position, they were
asked to do the same selecting task and give their decision
respectively.

The procedure of the second set of experiments is similar
to the first one. Sixteen respondents in this set were also sepa-
rated into unsupervised and supervised groups. The difference
is, in this set of experiments, the starting position is four times
the distance from the screen and move closer to the screen
successively.

The procedures of the two sets of experiments are shown
in Fig. 4.
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Fig. 4. The procedures of two sets of experiments

C. Logistic regression
In order to construct a statistical relation between the

viewing distance and human texture perception, we adopt
logistic regression to analyze the binary data obtained from
human respondents.

For a binominal variable Y , The probability p of Y = 1
can be defined by a function of a set of effect factors x =
(x1, ..., xr),

p = Pr{Y = 1|x1, x2, ..., xr} = f(x1, ..., xr). (11)

A logistic function can be defined by the formula:

f(Z) =
1

1 − e−Z
, (12)

where f(Z) represents the probability of Y = 1, the variable Z
represents the exposure to a set of effect factors which usually
defined as:

Z = β0 + β1x1 + β2x2 + ... + βrxr, (13)

where β0 is the intercept, and β1, β2, ..., βr are the regression
coefficients of x1, x2, ..., xr respectively.

In this paper, a binominal variable Y = 1 if a respondent
has chosen candidate texture A for the more similar texture
to the standard texture and Y = 0 otherwise. The logistic
regression model is applied to Y by introducing only one risk
factor D which indicates the viewing distance:

p =
1

1 − e−β0−β1D
, (14)

where p represents the probability of choosing texture A, β0

is the intercept, and β1 is the regression coefficient of D.

V. RESULTS AND DISCUSSIONS

We applied logistic regression to the data obtained from
four groups of respondents in two sets of experiments. Figure
5 shows the logistic regression results of scene 1 and scene 2.
The solid line represents the relation between the probability
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Fig. 5. Logistic regression: scene 1 versus scene 2.
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Fig. 6. Logistic regression: far to near versus near to far in scene 1.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Viewing distance

Pr
ob

ab
ili

ty
 o

f c
ho

os
in

g 
te

xt
ur

e 
A

 

 

data1: far to near, scene2
logistic regression of data1
data2: near to far, scene2
logistic regression of data2

Fig. 7. Logistic regression: far to near versus near to far in scene 2.
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Fig. 8. Logistic regression: unsupervised versus supervised in scene 1.
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Fig. 9. Logistic regression: unsupervised versus supervised in scene 2.

for a respondent to select candidate texture A in scene 1 and
their respective viewing distance. The dotted line represents
the relation in scene 2. In both scenes, candidate texture A have
similar global features with the standard texture, and candidate
texture B have similar local features with the standard texture.
That is, selecting texture A indicates global features dominated
the perception of the respondent, selecting texture B indicates
local features dominated the perception of the respondent.
Both logistic curves in Fig. 5 show clear increasing domination
of global features with the increasing of the viewing distance.
Two parameters effect the shape of the logistic curve: β0 and
β1 in (14). β0 indicates the position of the curve, and β1

indicates the changing rate of the curve. In this paper, we
use Dp=0.5 instead of β0 to evaluate the absolute position
where local and global features have the same domination:
Dp=0.5 = −β0/β1. The results of Dp=0.5 and β1 in various
comparisons are shown in Tab. I and Tab. II.

In Fig. 5, the value of Dp=0.5 in scene 2 is almost twice

larger than that in scene 1, due to the textures in scene 2
are twice the local magnifications of scene 1. However, the
values of β1 in scene 1 and scene 2 are also different. A
larger β1 value indicates a larger changing rate of the curve,
that is the confusing interval where the respondents could not
make unanimous decisions is larger. Because magnifications
have changed the size and number of grains in the textural
area, thus the balance of local and global features has been
changed. This result indicates that the viewing distance and
the mutual interaction of local and global features of a texture
have significant effects on human texture perception.

In order to investigate the effect of the order of testing
positions, we carried out two sets of experiments explained in
the previous section. The logistic regression results are shown
in Fig. 6 and Fig. 7 by comparing two different orders of the
testing positions. Both the value of Dp=0.5 and the value of β0

in near-to-far case are greater than those in far-to-near case.
It indicates that, the respondents who participated in near-
to-far experiments paid more attention to the local features
of the textures. The respondents who participated in far-to-
near experiments paid more attention to the global features of
the textures. This result may dues to the prejudgment of the
respondents. Although in the experiments the perceiving time
of each scene was not limited, the respondents may more or
less effected by the impressions of the scenes in the previous
positions.

Comparison results between unsupervised and supervised
groups are shown in Fig. 8 and Fig. 9. In both scenes, β0 have
greater values in supervised case than those in unsupervised
case. That is, the confusing intervals in the supervised groups
are smaller than those in the unsupervised groups. This result
dues to the respondents in supervised groups paid more
attention to the global directionality and the local grain shape
that we explained before the experiments. The supervised
respondents discriminated the textures mainly based on those
two features. However, the respondents in the unsupervised
groups had not have any prior information about the textures.
They evaluated and discriminated the similarity of the textures
according to various criteria which may include more textural
features. The respondents in unsupervised groups were asked
about their discriminating criteria after the experiments. Some
unsupervised respondents were attracted by the distribution
or density of the white grains and black blobs. The global
directionality and the local grain shape are not the only
attractive features. These results indicate that prior knowledge
has significant effects in texture discrimination.

VI. CONCLUSIONS

We synthesized textures using the PGPC texture model
based on mathematical morphology, and investigated the effect
of the viewing distance in texture perception. Two groups
of textures were synthesized by controlling local and global
features separately using the PGPC texture model. Visual
sensory tests were carried out on four groups of respondents
in two sets of experiments. We adopted the logistic regres-
sion model to construct a statistical relationship between the
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TABLE I
EXPERIMENTAL RESULTS

3.02040.75131.18050.7070β1

2.75703.94843.10682.2958            Dp = 0.5

scene2

2.56971.88073.28310.7419β1

1.47591.42491.6267-0.0784            Dp = 0.5

scene1

supervisedunsupervisedsupervisedunsupervised

near to farfar to near

-

TABLE II
EXPERIMENTAL RESULTS2

1.08111.73310.66941.38910.8824β1

2.97212.89823.14413.14072.7634           Dp = 0.5

scene2

1.84182.86981.24782.17571.5696β1

1.34581.55180.98471.45441.2096           Dp = 0.5

scene1

totalsupervisedunsupervisednear to farfar to near

viewing distance and human perception. The experimental
results indicate that the viewing distance and the mutual
interactions of local and global features of a texture have
significant effects on human perception. Other factors such
as prior knowledge and the order of the viewing positions
influence human perception in texture discrimination. This
study contributes to the construction of the numerical relation
between the viewing distance and human texture perception.

In further studies, we want to construct a general texture
discrimination model considering the effect of the viewing
distance. Further experiments on human perception in more
textures and more viewing distances is also required.
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