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Abstract—To recover texture images from impulse noise by the
opening operation which is one of morphological operations, an
suitable structuring element (SE) has to be estimated. Hitherto,
an unsupervised design method for the SEs has been proposed,
and it has adopted Simulated Annealing (SA) as an optimization
method. In this conventional approach, SEs are designed under
a neighborhood structure which keeps the size of shape, and the
size is gradually reduced in the search process. Due to this, the
search space is restricted. In this paper, Genetic Algorithm (GA)
which can search effectively on wide search spaces is applied
and the size of shape is included in design variables. Through
experiments, it is shown that our new approach outperforms the
conventional method.

I. I NTRODUCTION

Mathematical morphology is a fundamental framework of
image manipulation, and a wide range of nonlinear image
processing filters can be unified into the framework of mathe-
matical morphology [1], [2], [3].Openingandclosing, which
is the dual of opening, are typical morphological operations,
and fundamental morphological filters that have idempotence.
They are used for various methods of noise reduction, object
extraction, etc.

Mathematical morphological operations manipulate an im-
age with a small object calledstructuring element(SE),
which is equivalent to the window of image processing filters.
Opening composes the resultant image object by arranging
the SE inside a target object and removes residual regions
that are too small to locate the SE inside. The significance of
opening is its quantitativeness in the sizes of image objects.
The impulse noise removal by opening achieves a quantitative
operation in the sense that noise objects smaller than the SE
are removed exactly.

Since opening composes an image by repetitively locating
a SE, its shape and gray scale distribution directly appear in
the resultant image. In the case that the SE is inappropriate to
the image, it causes appearance of undesired microstructures
which are not related to the original image. These problems
can be avoided by the usage of an appropriate gray scale
SE that resembles the objects in the target image. Thus
determination of the shape and gray scale distribution of the
SEs is an important problem.

* This work was partially supported by Grant-in-Aid for Scientific Research
(C), 20560357.

In our previous work, we proposed design methods of
SEs for texture images [4], [5]. These optimization methods
estimate suitable SEs for gray scale opening for noise removal
of texture images based on thePrimitive, Grain, and Point
Configuration (PGPC) texture model[6] which regards a
texture as an image composed by a regular or irregular
arrangement of fundamental objects that are much smaller than
the size of image and resemble each other. Among them, the
proposed method in reference [5] is an unsupervised design
method for the shape and gray scale pixel values of SEs,
which does not require any training images. This proposed
technique adopts thesize distribution functionto construct the
objective function and uses Simulated Annealing (SA) [7] as
an optimization method. It performs as well as a supervised
method; however, it designed under a neighborhood structure
which keeps the size of shape, which restricts the search space
and decreases the possibility to discover better solutions.

In this paper, we adopt Genetic Algorithm (GA) [8], which
is one of probabilistic optimization methods, and improve the
unsupervised design method of SEs. In this approach, the
size of shape is included in design variables to obtain wide
variety of SEs. Just like the conventional SA approach, first
GA estimates the shape. After the optimization of shape, the
pixel values of SEs are also estimated. Through experiments,
we show the effectiveness of our new proposed technique.

II. M ATHEMATICAL MORPHOLOGY

A. Mathematical Morphology and Opening

In the context of mathematical morphology, an image object
is defined by a set. In the case of binary images, this set
contains the pixel positions included in the object, i.e., those
of white pixels. In the case of gray scale images, an image
object is defined by anumbraset. If the pixel value distribution
of an image object is denoted asf(x) wherex ∈ R2 is a pixel
position, its umbraU [f(x)] is defined as follows:

U [f(x)] = {(x, t) ∈ R3|f(x) ≥ t > −∞} (1)

Consequently, when we assume a solid of which support is
the same as a gray scale image object and height of which
at each pixel position is the same as the pixel value at this
position, the umbra is equivalent to this solid and the whole
volume below this solid within the support.
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Another object, calledstructuring element(SE), is defined
in the same manner above. The SE is equivalent to the window
of image processing filters, and supposed to have much smaller
extent than the image object.

In the case of a binary image and a SE,opening of an
image objectX with respect to a SEB, denotedXB , has the
following properties:

XB = {BZ |BZ ⊂ X, z ∈ R2} (2)

whereBZ indicates the translation ofB by z.
Here, we concentrate ourselves to opening in the explana-

tion in this and the next section since the operations onclosing
are regarded as the dual of opening.

In the case of the gray scale image and a SE, opening is
similarly defined by replacing the setsX and B with their
umbrae, respectively, and supposing thatz ∈ R3.

This property indicates that opening is the regeneration of
an image by arranging the SE, and removes smaller white
regions in binary case or smaller regions composed of brighter
pixels than its neighborhood in gray scale case than the SE.
Since opening eliminates smaller structures and smaller bright
peaks than the SE, it indicates that opening works as a filter
to distinguish object structures by their sizes.

B. PGPC Texture Model and Primitive Estimation

The Primitive, Grain and Configuration(PGPC) model [6]
represents a texture as an image composed by a regular or
irregular arrangement of objects which are much smaller than
the size of image. The objects arranged in a texture are called
grains, and the grains are regarded to be derived from one or
a few typical objects calledprimitives.

We assume that the primitive is expressed by a SE. We
also assume here that the grains are derived fromr times of
homothetic magnification of one primitive. The grain that is
a result of homothetic magnification,rB, is defined as (r-1)
times of Minkowskiset additions between SEB and another
small element. In this case,XrB is regarded as the texture
imageX composed by the arrangement ofrB only. It follows
that rB-(r+1)B indicates the region included in the arrange-
ment ofrB but not included in that of (r+1)B. Consequently,
XrB-X(r+1)B is the region wherer size of grains are arranged
if X is expressed by employing an arrangement of grains
which are preferably large magnifications of the primitive. The
sequence{X-XB , XB-X2B , · · · , XrB-X(r+1)B , · · · } is the
decomposition of the target texture to the arrangement of the
grains of each size.

Since the sequence can be derived by using any SE, it is
necessary to estimate the appropriate primitive that is a really
typical representative of the grains. We employ an idea that
the SE yielding the simplest grain arrangement is the best
estimate of the primitive, similarly to the minimum description
length (MDL) principle. The simple arrangement locates a few
number of large magnifications for the expression of a large
part of the texture image, contrarily to the arrangement of a
large number of small-size magnifications.

III. PROPOSED METHOD

In this study, we discuss an unsupervised design method
of SEs for noise removal for texture images using GA. The
shape of SE and its pixel value of each element are estimated
separately and no training image is required.

There are several impulse noise models for images. Here,
we adopt the model below.

x(i, j) =

{
xo(i, j) + l prob. p

xo(i, j) prob. 1 − p
(3)

Here,xo(i, j) indicates the pixel values of original image,
and l means a non-negative integer with uniform distribution.
x(i, j) is rounded to 255 ifxo(i, j) + l exceeds 255.

A. Application of GA

GA is among the most effective approximation algorithm for
optimization problems. It is one of direct search methods that
use an objective function value directly instead of evaluating
features of functions, such as gradient. GA advances its search
using multiple search points, which easily enables extension
of a design into a multi-objective design.

In our approach, we start from the estimation of optimal
shape of SE and then optimize the pixel values of each element
of it.

The optimization procedure of GA for the estimation of
shapes or pixel values is as follows. Here, the generation
alternation model based on Elitist Recombination (ER) model
[9] is adopted.

—————————————————————————
Procedure of GA

Step 0/Initialization/
Generate the initial populationP (0) composed of
Npop random solutions (shapes or pixel values),
individuals, and evaluate them. The generationt=0.

Step 1/Selection for reproduction/
For generating offspring,Npop/2 pairs of parents
are randomly sampled without replacement from the
current populationP (t).

Step 2/Offspring Generation/
Set the next populationP (t + 1) = ϕ and apply
following procedures to each pair (p1, p2).

(a) /Crossover/ ApplyNcross times of crossover
operator to parentsp1 and p2 and generate
Ncross offspring.

(b) /Mutation/ Apply a mutation operator to
each offspring probabilityPm.

(c) /Selection for survival/
Select the best individual and another in-
dividual by a roulette selection from the
family F (p1, p2) consisting ofp1, p2 and
their offspring, and add them intoP (t+1).
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Step 3/Check of the terminal criterion/
Go to Step 1 and sett = t + 1 until some terminal
criterion is satisfied, e.g., generations and/or the
number of evaluations.

—————————————————————————

1) Representation of Individual:Each SE is an individual
of GA and represented with a two-dimensional binary array
for optimizing a shape of SE. Fig. 1 shows an instance of
shape that consists ofn pixels randomly selected from a square
3x3 pixel. In this figure ’1’ indicates an element of the SE.
In this representation, the size of shape is included in design
variables. In this paper, each SE is formed in the range of 5 to
9 pixels selected from a square 9x9 pixel. Consequently, each
individual of GA is expressed as binary string of length 81.

In a pixel value optimization, a random integer value of the
range [0，127] is assigned to each element of the SE after
optimizing the shape. Each pixel value is coded into a binary
string of 7 bits. The chromosome length of individual is 7xn.

0 0 0 

1 0 1 

1 1 1 

Fig. 1. Aspect of initialization of an individual

2) Crossover and Mutation:For estimation of the optimal
shape, a mask array of{0，1} is generated randomly for each
pair of parent, and uniform crossover (UX) is applied to the
parents as shown in Fig. 2. In the UX, the element of parent
p1 is copied to the childc1 when the value of mask is ’1’,
while the element of childc2 reflects the value ofp1 in the
case of ’0’.

 

1 0 0 

0 0 1 

0 1 0 

Parent p1

Mask

Child c1

Child c2Parent p2

Fig. 2. Instance of uniform crossover

As a constraint for optimizing the shapes, an individual does
not have split-off points. The offspring generated by UX do
not necessarily satisfy this condition likec2 shown in Fig. 2.
In such a case, the individual takes a penalty in the evaluation.
The generation alternation model we adopt here can reproduce
a wide variety of offspring that inherit favorable characteristics

of parents by applying the crossover more than once to each
pair of parent. In the mutation, a random bit flip operator is
applied to offspring.

For pixel values optimization, UX and the bit flip mutation
are applied to binary strings.

B. Design of Objective Function

Here, we adopt asize distribution function[5] for construct-
ing objective functions. Opening of imageX with respect
to SE B means residue ofX obtained by removing smaller
structures thanB. We perform opening ofX with respect
to the homothetic SEsrB which are results ofr times of
homothetic magnification ofB, and obtain the image sequence
{X, XB , X2B , · · · , XrB , · · · }. In this sequence,XrB is
obtained by removing the regions smaller thanrB. We then
calculate the ratio of the area (for binary case) or the sum
of pixel values (for gray scale case) ofXrB to that of the
original X at eachr. The area of an image is defined by
the area occupied by an image object, i.e., the number of
pixels composing an image object in the case of discrete
images. The function from a sizer to the corresponding ratio
is monotonically decreasing and it is unity when the size is 0.
This function is called the size distribution function. The size
distribution function of sizer, F (r), indicates the area ratio
of the regions whose sizes are greater thanr or equal tor.

In the conventional SA approach, the integral of 1-F (r) is
used as the objective function for optimization of both a shape
and pixel values. Here, we minimize the integral ofF (r) for
optimizing pixel values while minimization of the integral of
1-F (r) is applied to the optimization of shape.

In this section, we confirm the validity of objective functions
for evaluation of SEs and discuss difficulty of this design
problem by investigating the correlation between a evaluation
value and MSE.

1) Shape Optimization:We minimize the integral of 1-F (r)
to estimate the optimal shapes just like the conventional SA
approach.

Fig. 3 shows the relation among evaluation values and MSEs
between the original texture and a processing result of SE.
These are distributions of 3000 random individuals, SEs, on
burlap (D103), cloth (D101), sand (D29)andstraw (D49)of
Brodatz textures [10]. The size of each image is 64x64 and
its gray levels 256. Corrupted texture images were generated
by selecting 1000 pixels randomly.

In these figures, distribution which extends diagonally from
the bottom left to the top right means that we can obtain closer
processing results to original textures by optimization. From
Fig. 3, minimization of 1-F (r) is effective on burlap, sand,
and straw. In the case of straw, distribution is separated to
some parts, which indicates the fitness landscape of objective
function is multimodal whose local optima are dispersed.

In contrast, the distribution on cloth spreads up and down,
and the correlation between the evaluation value and MSE is
poor. In this case, the processing result is not necessarily close
to the original texture even though SE is optimized. Another
suitable objective function should be designed to this case;
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Fig. 3. MSE vs Evaluation Value in Shape Optimization

however, we adopt 1-F (r) as the objective function on overall
textures.

2) Pixel Value Optimization:We minimize the integral of
F (r) to estimate the optimal pixel values contrary to the
shape optimization. This is because the positive correlation
between evaluation values and preferable processing results
can be observed by minimizingF (r) as shown in Fig. 4.

These results are distributions of 3000 individuals whose
shapes are optimized oncork (D4), marble (63), matting (83)
andwater (37). Pixel values of each individual are randomly
assigned in the range of [0, 127] and corrupted texture images
were generated by selecting 1000 pixels randomly. Dashed line
in these figures indicates the MSE of processing result of flat
SE that has the optimal shape whose pixel values are 0.
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Fig. 4. MSE vs Evaluation Value in Pixel Value Optimization

From these results, importance of pixel value optimization
is confirmed by comparing the processing results of SE of

the optimal shape. Distributions of overall instances extend
diagonally from the bottom left to the top right and we can
confirm that closer processing results to original textures are
obtained by optimization. Among them, we can see landscape
of objective function on cork is multimodal. In the case of
matting in which the minimum of evaluation value and that of
MSE are out of synchronization, closer processing results to
the original texture are not necessarily obtained even though
we improve search mechanism of GA. In addition, wide
variability on the same evaluation value is observed and the
improvement of design of objective function is one important
issues of the future work.

IV. N UMERICAL EXPERIMENTS

To show the effectiveness of the proposed method,
the design results by conventional method of SA and
the proposed method are compared. 10 kinds of images;
beans(D75), burlap(D103), cloth(D101), cork(D4),
fur(D93), marble(D63), matting(D83), sand(D29),
straw(D49) andwater(D37) of Brodatz textures [10] were
used for the examination. The size of each image was 64x64
and its gray levels 256. We used corrupted texture images
generated by randomly selecting 1000 pixels.

For experiments, the population sizeNpop was set to 30, and
a search was terminated after 30 generations of GA for both
optimization. Each pair of parents for the crossover generated
30 offspring. The mutation rate was set to 0.01 for the shape
optimization and 0.05 for the pixel value optimization. The
procedure and parameters of conventional SA approach are
described in the appendixA.

Table I shows the best value of MSE between the processing
result and the original image, the averaged MSE (avg.) and the
standard deviation of MSE (std.) out of 20 trials.

In this table, ”s/p” indicates predicted problem difficulties
on both the shape optimization (s) and the pixel value op-
timization (p) based on the correlation between evaluation
values and MSEs.⃝ indicates that the problem has positive
correlation and GA would be effective.△ shows a separate
but positive correlation, which means that fitness landscape
of problem has distributed local optima.× indicates that no
correlation is observed or there is a gap between the minimum
evaluation value and that of MSEs.

For comparison, the best processing result of SE obtained
by SA and the processing result of SE derived from the shape
optimization are illustrated. The estimation results with the
best solutions are shown in Figs. 5-9.

From Table I, the proposed GA approach outperforms the
conventional method. From the average of MSE, the proposed
GA obtains good solutions stably, though it searches larger
space. In addition, the results of pixel value optimization per-
forms equally or superior to the results of shape optimization
only, and we can confirm the effectiveness of it in most texture
images.

On the instances whose difficulties indicate⃝ or △, e.g.,
cork, fur, and marble, improvement is anticipated by using
a large population size and other effective crossovers and
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TABLE I
PROCESSING RESULTS: THE BEST, AVERAGE AND STANDARD DEVIATION

OF MSE OUT OF 20 TRIALS OF GA

Instance Degraded GA SA Optimal
name s/p Image best avg. std. best shape
beans ×/△ 2213 705 713.6 4.83 988 705
burlap ○/× 4210 1026 1034.4 4.06 1826 1046
cloth ×/○ 3459 967 981.8 8.95 994 1040
cork ○/△ 2271 516 528.8 4.88 626 514
fur ○/○ 1244 310 316.6 2.44 626 310
marble ○/○ 2624 473 476.1 1.49 467 477
matting ○/× 2014 573 578.2 2.91 591 581
sand ○/○ 2565 248 253.1 1.73 272 255
straw △/○ 2846 247 251.5 2.16 326 254
water ○/○ 2503 195 200.1 2.23 232 210

generation alternation model with advanced diversity. On the
other hand, instances which have little correlation between
evaluation values and preferable processing results, such as
beans, require reconsideration of objective functions.
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Fig. 5. Estimation of burlap by GA
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Fig. 6. Estimation of cloth by GA

V. CONCLUSION

This paper has proposed a new unsupervised design method
of SEs for impulse noise removal for texture images using GA.
We first confirmed the validity of using the size distribution
function F (r) as objective functions, and we adopted the
integral of 1-F (r) for the shape optimization, and the integral
of F (r) to optimize pixel values of SEs. We compared the
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Fig. 7. Estimation of marble by GA
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Fig. 8. Estimation of straw by GA
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Fig. 9. Estimation of water by GA

proposed GA approach to the conventional SA approach
by using several kinds of texture of which difficulties were
different one another, and showed that the proposed GA almost
outperformed the conventional method from the perspective
of the best and the average of MSE. There are some texture
where the size distribution function cannot work well, and
improvement of design of objective function is one important
issues of the future work.
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APPENDIX

A. Estimation using SA
The estimation by simulated annealing (SA) has a parameter

called temperaturethat controls the probability where the
modification of SE is accepted even if the evaluation function
is increased by this modification. The temperature at thek-th
iteration in one optimization process, denotedTk is defined so
that acceptance probabilityP (∆IF ) is as follows:

P (∆IF ) =
1

(1 + exp(∆IF/Tk))
(4)

where∆IF is the increment of the evaluation function. The
initial temperatureT0 is determined by setting the acceptance
probability P at the initial state to 0.35 and the following
calculation:

T0 =
∆IF

log(1/P − 1)
(5)

The temperature decreases following the iteration, as follows:

Tk+1 = 0.98Tk (6)

The number of iteration is fixed to 1000 times in our experi-
ments.

The initial structuring element is set to the cross-shaped
one of 9 pixels, and the initial pixel values are set to 50 at
all the pixels. The number of pixels is fixed to 9 at the initial
estimation, and the estimation procedures are repeated with
decreasing the number of pixels by one, and the estimate where
the number of pixels is 5 is regarded as the final estimate of
the primitive. The final number of pixels is set to 5 based on a
preliminary experiment. The threshold used for the limitation
of variance is set to 500 when the number of pixels is 9, and
decreases by 100 as the number of pixel decreases by one.


