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Abstract. Mathematical morphology with gray scale structuring ele-
ments has attracted much attention, since combinations of the opera-
tions in this class can realize almost all noise-removing filters. However,
the optimization method for the combination is still uncertain. In this pa-
per, an optimization method for a mathematical morphological filter with
gray scale structuring elements is proposed. This method is based on
the concept of a neural network with morphological operations and on
learning using simulated annealing. The method is also applied to gray
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1 Introduction

Filtering is one of the most fundamental techniques for im-
age processing. Raw images should be properly filtered to
prepare for high-level image processing such as pattern rec-
ognition. Recently, nonlinear filters have attracted more at-
tention than linear ones, since they outperform the linear
ones in such tasks as the improvement of nonlinearly cor-
rupted images. The morphological filter is one of the most
popular nonlinear filters. It has the significant characteristic
that the image shapes and sizes are mainly treated, rather
than pixel values themselves. This characteristic is useful
for image recognition because image shapes are important
for such high-level applications. It is also useful for remov-
ing impulsive noises, since such noises can be regarded as
very small shapes in an image.

The basis of mathematical morphology' consists of two
fundamental operations called erosion and dilation. Intu-
itively speaking, erosion shrinks image objects and dilation
expands them, in the coordinate space of pixel positions.
The structuring element determines how the objects are
shrunk or expanded. Various combinations of the structur-
ing elements realize many kinds of operators, which cover
a very wide range of image operations. According to the
filter theorem, all translation-invariant increasing filters can
be expressed by morphological operations with gray scale
structuring elements, followed by logical operations.

For all their advantages, morphological filters are less
widely used than linear ones. The reason is that an optimi-
zation method to design a morphological filter satisfying
one’s requirements is still unavailable. In the case of the
linear filters, Fourier analysis and the criterion of the spatial
frequency are sufficiently well established. A similar crite-
rion for the morphological filters has not been discovered
yet.

We recently proposed a novel approach to this problem
with the binary morphological operations.’ Our approach is
based on the learning method of the layered neural net-
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work. We have constructed a layered neural network whose
basic operation is the morphological operation. This
method requires an example set of a noisy image and its
ideal output. Its criterion for the design is minimizing the
mean squared error between the filtering output of the noisy
image and the ideal output.

The idea of this learning method has its foundation in
the relationship between the rank-order filter and artificial
neural networks.” We recently proposed a design method
for the rank-order filter family using the formulation of
layered neural networks.”~’ Other researchers have investi-
gated a similar method.® We utilized the close relationship
between the rank-order filter family and the shift-invariant
layered neural network. Each pixel is regarded as a neuron,
and an image corresponds to a layer. The filtering operation
to get the value of each neuron in the next layer is realized
by shift-invariant interconnections to the neurons in the
previous layer with certain weight coefficients and a non-
linear operation. The extent of the interconnections from
each neuron corresponds to the extent of the filter window.
In this formulation, the optimization methods for the con-
ventional artificial neural networks can be directly applied
under the restriction that the interconnections should be al-
ways shift-invariant.

In the case of the morphological filters, another learning
method must be applied, since the mathematical morpho-
logical operation is not described analytically. We applied
in Ref. 3 the simulated annealing method. The learning
process is developed by setting or removing an intercon-
nection between neurons at each position. The simulated
annealing algorithm evaluates the variation of the error af-
ter the modification of the interconnections and determines
whether the modification should be fixed or not.

In this paper, we propose an extension of our method
proposed in Ref. 3 to handle filters with gray scale struc-
turing elements. The class of translation-invariant increas-
ing filters is proved by the filter theorem to contain almost
all practical noise-removing filters. Thus we are motivated
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to extend the learning method for the optimization of the
morphological filters to the case of gray scale morphologi-
cal and logical operations. In this case the network is con-
sidered to have interconnections to which certain values are
assigned. Simulated annealing was originally proposed to
determine the on-off status—i.e., the existence—of the in-
terconnections. We extend the algorithm to handle the
modification of multivalued interconnections.

We also extend the method to networks based on the
bipolar gray scale morphological operation. The bipolar
morphological operation,9 which contains bipolar erosion
and bipolar dilation, is the fundamental operation of mor-
phological image differentiation. The rank-order-based
nonlinear differential operator (RONDO),' which is an ex-
tension of the rank-order filter to edge detection, is shown
to be decomposable into bipolar morphological operations,
as the median filter is decomposable into conventional mor-
phological operations.” We previously proposed a learning
method to optimize the binary bipolar morphological
operations;11 in this paper we show the application of our
learning method to optimize bipolar morphological opera-
tions with gray scale structuring elements.

We describe in Sec. 2 the conventional mathematical
morphology and the bipolar morphology with gray scale
structuring elements. In Sec. 3 we present our network for-
mulation based on the morphological operations. We also
explain our learning algorithm based on simulated anneal-
ing. We show in Sec. 4 some experimental results of our
method. We conclude our work in Sec. 5.

2 Mathematical Morphology with Gray Scale
Structuring Elements

21 Conventional Morphological Operations

Mathematical morphology is an idea for modeling the pro-
cesses of human recognition of visual information. Math-
ematical morphological operations are shift-invariant image
manipulations and can be decomposed into two simple ba-
sic operations—dilation and erosion.

We first explain these basic operations in terms of binary
structuring elements for binary images. These operations
are defined as set operations. An image is assumed to be a
set of pixel positions that constitute image objects. Let X
denote a set representing an image. Let B be another set
called a structuring element. The structuring element cor-
responds to the window of a filter. The Minkowsky set
subtraction and addition are defined as follows:

subtraction: XoB={x|B,CX}; (1)

addition: XeB={x|B,NX+J}, (2)
where B, denotes translation of B by x, defined as

B.={z+x|zeB}. (3)

The erosion and the dilation are defined as X B and X
@ B, respectively, where B is defined as

B={-x|xeB}. (4)
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Fig. 1 Basic operations in mathematical morphology. (a) Binary op-
erations. Image is shown by X, and structuring element by B. (b)
Operations on gray scale image by binary structuring element. The
one-dimensional case is shown for simplicity. The image X is shown
by the solid curve, and the extent of the structuring element B by the
horizontal line. The resultant images are shown by the solid curves
over the original image shown by gray curve. (c) Operations on gray
scale image by gray scale structuring element.

The effects of dilation and erosion are schematically il-
lustrated in Fig. 1(a). Images and structuring elements, cor-
responding to the windows of the image filters, are treated
in mathematical morphology. Suppose that the image
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X(y)

function

Fig. 2 Umbra of a function. The one-dimensional case is shown for
simplicity. The umbra, shown by the shaded area, extends to —x
along the vertical axis.

moves along the boundary and through the interior of the
structuring element. The dilation of the image is the whole
area where the moving image sweeps at least once. The
dilation expands the original image. The erosion of the im-
age is the area that is included in the moving image all the
time the image is moving. The erosion shrinks the original
image.

The morphological operations for gray scale images can
be defined by introducing the concept of umbra.'? Consider
a function X(y), which expresses a gray scale image,
where y € R", and consider an R**! coordinate system for
(v, X(»))- In most cases, for image processing, n = 2. The
umbra of a function is defined in this R**! coordinate sys-
tem as the set of all coordinate points lower than the value
of the function over the domain of the function, as shown in
Fig. 2. Using this expression, the morphological operations
of gray scale images are reduced to binary operations on
the umbra of the function for the image. In the case that the
structuring element is binary, the structuring element is de-
fined as a range on the y axis. The mathematical operation
is defined similarly to the case of binary images by moving
the umbra of the function along the range of the y axis, as
shown in Fig. 1(b). In this case, the erosion (dilation) is
reduced to the set of the minima (maxima) of all the pixel
values at each pixel position during the movement of the
umbra.

The gray scale structuring elements are defined not by a
range on the y axis but by another umbra. Dilation by gray
scale structuring elements is defined by moving the umbra
for the image along the umbra for the structuring element,
i.e., not only along the y axis but also along the vertical
axis. The erosion is defined as the complement of the dila-
tion between the umbrae for the structuring element and the
complement of the image. Here the complement of X(y) is
defined as —X(y). These operations are illustrated in Fig.
I(c). They are also simply described by maximum/
minimum and addition/subtraction operations.'? Let a struc-
turing element be B(y). The erosion and dilation of X(y)
by B(y) are defined as

erosion: (XOB)(y)=inf[X(t)—B(1—y)], 5)
teA

dilation: (X®B)(y)=sup[X(1)+B(t—y)], (6)
teA

where A is the extent of B(y).

The importance of extending mathematical morphology
to gray scale images and structuring elements lies in the
existence of the filter theorem.! This theorem states that
every increasing shift-invariant filter can be realized by ero-
sions by a certain number of gray scale structuring ele-
ments followed by the pixelwise OR operation, or dilations
followed by the AND operation. An increasing filter is de-
fined as one that preserves the relations of inclusion be-
tween objects in images. If an increasing filter preserves an
image feature, it preserves all larger features. If an increas-
ing filter removes an image feature, it removes all smaller
features. This property is quite natural for noise-removing
filters. The shift-invariance property is also quite natural for
such filters. Thus the filter theorem states that almost all
noise-removing filters can be decomposed into morphologi-
cal operations.

2.2 Bipolar Morphological Operations

The bipolar morphological operations are defined by com-
binations of the conventional morphological operations, as
follows:

: : [Xo(B)]"=(XeB")\(X°©B"),
bipolar erosion: [Xo(B)]~ =(X‘@B*)\(XoB"~), (7)

: . [Xe(B)]"=(X®B " )\(X°®B7),
bipolar dilation: [[X@(B)]_=(X°€BB+)\(X@B_), (8)

where X¢ is the set complement of X. Bipolar morphologi-
cal operations require a pair of sets as the structuring ele-
ments. The structuring element B is called the positive
element, and B~ is called the negative element. A pair of
elements is required because calculating the image differ-
entiation needs at least two pixels. We use here the symbol
\ to denote a fuzzy-set operation called bounded difference,
defined as follows:

Mxvy(x) =max(ux(x)+ uy(x)—1,0), 9

where ux(x) means the membership function of an ele-
ment x of the fuzzy set X. In the case of crisp sets, i.e.,
binary images, the bounded difference is reduced to simple
set intersection. Bipolar morphological operations map an
input image set to two resultant sets [ |* and [ ]”, because
an image-differentiating operation outputs positive and
negative values in general. The set [ ]* corresponds to a
positive differential value (i.e., edge image), and [ ] to a
negative. This definition is still valid for the case of gray
scale structuring element if erosion and dilation are defined
for grayscale structuring elements.

Bipolar erosion outputs only complete edges that are
exactly along the orientation of the structuring element and
whose length is greater than or equal to the size of struc-
turing elements. Bipolar erosion can be thought of as ‘‘the
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output layer

input layer

Fig. 3 Network architecture based on morphological operations.

strictest edge estimation.”” Bipolar dilation detects any pix-
els that potentially belong to an edge. It can be thought of
as ‘‘the most tolerant edge estimation.”” Many morphologi-
cal edge detectors can be constructed by combining the
bipolar morphological operations with several structuring
elements by logical operations. For example, RONDO is
constructed from OR of the bipolar erosions or from AND
of the bipolar dilations.

3 Network Configurations and Learning
Algorithm

3.1 Network Configurations

Our novel neural network is based on mathematical mor-
phological operations with multiple structuring elements
and on multivalued logical operations. The principle of our

network formulation is schematically illustrated in Fig. 3.
The basic network has two layers, the input layer and the
output one. Each layer corresponds to an image, and each
neuron corresponds to a pixel. A neuron in the output layer
is connected to several overlapping sets (called perceptible
areas) of neurons that lie in the input layer around the
corresponding position of the output neuron. Each percep-
tible area has different patterns of connections between a
neuron in the output layer and some neurons in each per-
ceptible area. Because of the shift invariance of the mor-
phological operation, the connecting pattern for every out-
put neuron is the same. The operation to get the values of
the neurons in the output layer is as follows: Each neuron
in the output layer contains several perceptible areas. In
each perceptible area, the connected neurons are regarded
as constructing a structuring element. Then a morphologi-
cal operation is carried out, and the neuron determines its
value by a multivalued logical operation on the results of
the morphological operation for each perceptible area.

In the conventional neural network, the output is deter-
mined by some thresholdlike operations on the summation
of the values of the connected neurons in the input, so that
it is suitable for handling binary values. Thus handling gray
scale images requires some conversion to binary images,
such as threshold decomposition. On the contrary, all the
operations in the proposed network are calculated in gray
scale, and no binarizing techniques are needed. For this
reason the morphological network is natural for the design
of gray scale image processing.

This architecture can be extended to multilayered net-
works with the use of opening (which is defined as erosion
followed by dilation) or closing (dilation followed by ero-
sion), with multiple structuring elements. This multilayered
architecture, shown in Fig. 4, has an intermediate layer that
corresponds to each perceptible area. Each intermediate

morphological operation

connections

perceptible areas

input layer

connections

logical operation

output layer

intermediate layers

Fig. 4 Multilayered network architecture for opening and closing.
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Fig. 5 Network architecture for bipolar morphological operations.

layer is the output of the basic network with the corre-
sponding perceptible area as input. Since each basic net-
work here has only one perceptible area, the basic network
requires no logical operation. These basic networks are
based on erosion (dilation) in the case of opening (closing).
Then another set of the basic networks is applied for the set
of the intermediate layers. Each perceptible area assigned
to a given intermediate layer is the reverse of the corre-
sponding perceptible area in the first half in this cascade,
because of the relation to opening or closing. These basic
networks in the second half are based on dilation (erosion)
in the case of opening (closing). The values in the output
layer are then calculated by a logical operation from the
outputs of the basic networks. This operation is OR (AND)
in the case of the opening (closing).

The network architecture for the morphology of gray
scale images with binary structuring elements is easily ex-
tended to operations by gray scale structuring elements and
to bipolar morphological operations. In the case of the net-
work, to optimize the operation by gray scale structuring
elements, a gray scale value is assigned to each connection.
This value is used as the gray scale value of the structuring
elements for the gray scale morphological operation in each
perceptible area. In the case of the optimization of the bi-
polar morphological operations, there is no difference ex-
cept that each perceptible area has positive and negative
parts, and the network performs the bipolar morphological
operations, as shown in Fig. 5.

3.2 Learning Algorithm

The learning algorithm optimizes the connection patterns
(i.e., the shapes of the structuring elements) and also the
gray scale value assigned to each connection in the percep-
tible areas. This algorithm requires an example of a cor-
rupted image and its ideal output. The object of the learning
algorithm is to minimize the error between the output of the
network from the corrupted image and the ideal output. The
minimization is gradually achieved during iterations. At an
iteration, the algorithm randomly alters one connection of
one perceptible area. We apply two kinds of alterations:
binary alteration and gray scale alteration. The binary al-

teration is the same as the method we proposed before for
the optimization of binary morphological operations. This
operation sets or removes one connection. If a connection is
established, the value assigned to this connection is sup-
posed to be zero. The gray scale alteration varies the values
assigned to the connection. More precisely, the procedure is
described as follows:

Generate unity or zero randomly in equal probability:
If unity is generated,

If this connection is not set, set the connection and as-
sign zero.

Else 1 is added to the value assigned to this connection.
If zero is generated,

If this connection is set and the value is greater than O,
then 1 is subtracted from the value.

Else this connection is set and the value is O; the con-
nection is removed.

Else the connection suffers no effect (is still not set).

Then the learning algorithm estimates the errors between
the outputs of the actual network and the ideal one for both
before and after the alteration. It calculates the difference of
these two errors. Then it determines whether to fix this
alteration or not, following the principle of simulated an-
nealing. Simulated annealing is a minimization mechanism
that makes the error reach the global minimum with high
probability, as follows: The alteration is fixed whenever it
causes reduction of the error. If the alteration causes an
increase of the error, it is fixed with some probability
smaller than 0.5. Formally, let the difference of the error be
x, and let the probability of fixing the alteration be f(x).
The relationship between x and f(x) is as follows:

1

- 1+exp(x/T,)’ (10)

f(x)

where T, is called the temperature parameter at the n’th
iteration. This parameter decreases with the progress of the
iteration. From this equation we get that larger error causes
smaller probability, and that progress of the iteration also
makes the probability smaller. The learning algorithm iter-
ates these alterations and determinations until the connec-
tions do not vary any further.

In the practical cases of the optimization of filters for
image processing, some restrictions on the shapes of the
window or the perceptible area are often required. Since
mathematical morphology is a well-adapted framework for
image manipulation, it is easy to attach additional restric-
tions to the learning procedure.

4 Experimental Results

In all the experiments in this section, every image, unless
otherwise specified, contains 100X 100 pixels, and each
pixel has an 8-bit gray scale value.

4.1 Noise Removal by Morphological Filters with
Gray Scale Structuring Elements

In all the experiments in this subsection, we optimized the
open-closing filter with three structuring elements. The ex-
tent of each structuring element is 5X5 pixels.

Optical Engineering, Vol. 35 No. 8, August 1996 2207



Asano, Yamashita, and Yokozeki: Learning optimization of morphological filters . . .

Fig. 6 Original image for the experiment on noise removal.

Fig. 7 Noisy image, corrupted by salt-and-pepper noise.

Fig. 8 Output of the optimized filter.
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Fig. 9 Output of the median filter.

Figure 6 shows the original image for the learning pro-
cedure. The filters are optimized in the sense that the out-
puts from the sample noisy image corrupted by certain
noises resemble the original image as well as possible. Ev-
ery learning procedure applies binary alteration at first, and
then applies gray scale alteration. The learning procedure
was iterated 3000 times, with 7, = 5,000,000 and T,
=0.995T7,_,.

Figure 7 shows the noisy image corrupted by salt-and-
pepper noise of probability 3%. Figures 8 and 9 show the
outputs of the optimized filter and the median filter with a
3X3 window, respectively. This result indicates that the
optimized filter preserves the image details better. Figure
10 shows the resultant structuring elements. The blank cells
are outside the structuring elements. Table 1 shows the
comparison of the mean squared errors per pixel between
the original image and the noisy image, as well as the out-
put of the median filter with 3X3 window, the optimized
open-closing filter with three binary structuring elements
whose extent is 5X5 pixels, and the optimized filter with
gray scale structuring elements. This comparison indicates
that introducing gray scale structuring elements achieves
better optimization than using binary structuring elements.

Figure 11 shows another image corrupted by the same
type of noise as the image for the optimization procedure.
Figures 12 and 13 show the output of the optimized filter
and that of the median filter with 3X3 window, respec-
tively. It is shown that the optimized filter removes noise
effectively while preserving the details better than the con-
ventional median filter. Note that the noisy pixels near the
boundary of Fig. 12 are not related to the performance of
the optimized filter: they remain unfiltered, since the opti-
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Table 1 Comparison of the filters for noise removal.

Image Error
Noisy image 606.3812
Median filter 26.9451
Optimized filter with binary 20.9111
structuring elements
Optimized filter with 10.2102

grayscale structuring elements

mized filter has structuring elements of 5X5 pixels, so that
the pixels whose distance from the boundary is less than 3
pixels cannot be filtered.

4.2 Edge Detection in a Corrupted Image by Gray
Scale Bipolar Morphological Operators

In all the experiments in this subsection, we optimized the
bipolar dilation-AND operator with seven structuring ele-
ments. The bipolar dilation-AND operator outputs the mini-
mum of the absolute value of the bipolar dilation by each
structuring element. The extent of each structuring element
is (vertical 3)X (horizontal 1) for both positive and negative
parts. Figure 14 shows the original image for the learning
procedure. The operators are optimized to extract the edge
image, which is as close as possible to the edge image
extracted from the original noise-free image (i.e., the ideal
edge image). Every learning procedure applies binary alter-
ation at first, and then applies gray scale alteration. The
learning procedure’ is iterated until 7, reaches 0.01 or
smaller. Here T, = 10,000,000,000, and T, decreases expo-
nentially.

Figure 15 shows the noisy image corrupted by salt-and-
pepper noise of probability 1%. Figures 16 and 17 show the
outputs of the optimized operator with gray scale structur-
ing elements and the optimized filter with binary structur-
ing elements, respectively. Figure 18 shows the resultant
structuring elements of the optimized filter with gray scale
structuring elements. The thick vertical line divides a struc-
turing element into the positive part on the right side and

Fig. 12 Output of the optimized filter for the corrupted image in Fig.
11.

Fig. 13 Output of the median filter.

Fig. 11 Another corrupted image.

Fig. 14 Original image for the experiment on edge detection.
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Fig. 15 Noisy image, corrupted by salt-and-pepper noise.

Fig. 16 Output of the optimized operator with gray scale structuring
elements.

Fig. 17 Output of the optimized operator with binary structuring el-
ements.
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Fig. 18 Resultant structuring elements.

the negative part on the left side. The blank cells are out-
side the structuring elements. Table 2 shows a comparison
of the mean squared error per pixel between the detected
edge images and the ideal edge image for the optimized
morphological filter with gray scale structuring elements
and for that with binary ones. This comparison indicates
that introducing gray scale structuring elements achieves
better optimization than using binary structuring elements.
The optimized filter with gray scale structuring elements
outperforms that with binary elements, which we proposed
before.!

Figure 19 shows the noisy image corrupted by the
Gaussian noise of standard deviation 10. Figures 20 and 21
show, respectively, the output of the optimized operator
with gray scale structuring elements and that of a linear
edge detector with the same size of window as the structur-
ing element of the optimized operator and whose coeffi-
cients are all 1, respectively. Figure 22 shows the optimized
structuring elements. Table 3 shows a comparison of the
mean squared errors per pixel between the filter outputs and
the original image for the optimized morphological filter
with gray scale structuring elements and for the linear edge
detector. These results indicate that the bipolar morphologi-
cal filter has better performance on linearly corrupted im-
ages than the linear operator, which is known to be suitable
for this situation.

To verify how well the operator is generalized, the op-
timized filter was applied to an image different from those
used for the optimization procedure. Figure 23 shows the

Table 2 Comparison of the edge detectors in the case of salt-and-
pepper noise.

Image Error
Noisy image 930.0626
Optimized operator with binary 5.3381
structuring elements
Optimized operator with 1.9261

grayscale structuring elements
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s o S ; i
Fig. 19 Noisy image, corrupted by Gaussian noise.

Fig. 20 Output of the optimized operator.

Fig. 21 Output of the linear edge detector.
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Fig. 22 Resultant structuring elements.

Table 3 Comparison of the edge detectors in the case of Gaussian
noise.

Image Error
Noisy image 72.6444
Linear edge detector 36.1249
Optimized operator with 14.9406

grayscale structuring elements

noiseless test image, and Fig. 24 shows the ideal edge im-
age for reference. In this experiment, each of these images
contains 256X240 pixels, the operators are applied both
vertically and horizontally, and the outputs are combined
by taking the maximum. Figure 25 shows a noisy image
corrupted by the same type of noise as Fig. 15. The result-
ant image output by the filter optimized for Fig. 15 is
shown by Fig. 26. This result indicates that the optimized
filter is well generalized to extract edges of any direction in
the noisy image.

5 Conclusions

We have proposed in this paper a novel optimization
method for a mathematical morphological filter with gray
scale structuring elements. This method is based on the
concept of the neural network with morphological opera-
tions and learning using simulated annealing. We have also
applied gray scale bipolar morphological filters for image
differentiation. We have shown experimentally that the op-
timized morphological filters and edge-detecting operators
with gray scale structuring elements have excellent perfor-
mance for images with various types of noise. These results
also indicate that the morphological filters and operators
with gray scale structuring elements have excellent capabil-
ity for noise removal in various types of image processing.

——

Fig. 23 Test image for edge detection.
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Fig. 24 |deal edge image.

i S

Fig. 25 Noisy test image.

Fig. 26 Output of the optimized operator with gray scale structuring
elements.
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It will be a future project to introduce a priori knowledge
about shapes of structuring elements in order to make the
learning procedure more efficient.
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