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Morphological Multiresolution Pattern Spectrum

Akira ASANOY, Member and Shunsuke YOKOZEKI', Nonmember

SUMMARY The pattern spectrum has been proposed to
represent morphological size distribution of an image. However, the
conventional pattern spectrum cannot extract approximate shape
information from image objects spotted by noisy pixels since this is
based only on opening. In this paper, a novel definition of the pattern
spectrum, morphological multiresolution pattern spectrum (MPS),
involving both opening and closing is proposed. MPS is capable of
distinguishing details from approximate information of the image.
key words: image analysis, multiscale analysis, mathematical
morphology, pattern spectrum

1. Introduction

Recently, quantitive characterization of shapes of figures in
digital images has been investigated. The mathematical
morphology [1] is a key theory in this field. It introduced the
structuring element (SE), a small figure similar to the
window of image filters, and an image operation called
opening. The opening by an SE removes fragments smaller
than the SE and preserves the rest of the figures. The
significance of the opening is to eliminate smaller fragments
according to the size of the SE, i.e. a quantitative measure.

The pattern spectrum (PS) [2] was proposed as a
method to extract contribution to each size from an image
using opening. The opening removes fragments whose sizes
are smaller than the size of SE. If the SE is gradually
magnified while preserving the shape and the opening is
performed by each magnified SE, we get a sequence of the
resultant images by the openings with the SEs of increasing
sizes. The n-times magnification is generated by n times of
recursive dilations of the SE itself. The value n is referred to
“size” here. The fragments smaller than the corresponding
SE have been removed from each corresponding image in
the sequence. The area of differences between the resultant
images for sizes n and n+1 indicates the contribution of the
figures in the original image to size n. This is defined as the
spectral value of PS for size n.

PS is similar to the Fourier spectrum in the field of
linear signal processing. While the Fourier transformation
decomposes an image to the contributions to the spatial
frequencies, PS decomposes an image to the contribution to
sizes. In other words, PS expresses how many objects of a
certain size which are similar in shape to an SE are contained
in an image.
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The conventional PS is useful to quantitatively handle
image decomposition [3], image classification [4], [5], and
skeltonization [2]. This method is, however, based only on
openings, and it causes a defect. Compare a square and the
same square with a small black spot, shown in Fig. 1 (white
figure on black background). By the conventional PS with a
square SE, the complete square itself is similar to the SE so
that only one peak appears in the spectrum, as shown in Fig.
1(a). However, in the case of the rectangle with a spot,
shown in Fig. 1(b), the openings by gradually magnified SEs
never remove the spot. Thus the whole figure is no longer
regarded as one large rectangle and the peak found in the
spectrum in Fig. 1(a) does not appear in the spectrum Fig.
1(b), though the shape of the rectangle in Fig. 1(b) is quite
close to that in Fig.1(a). This suggests that a small
modification in an image causes quite different spectra, and
that the information about approximate view of the figure is
no longer extracted by the conventional PS in such cases.
This result is quite different from human impression of the
images. This example also suggests that the conventional PS
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Fig. 1 A defect of the conventional PS. (a) spectrum for a complete
square (white on black background). (b) spectrum for a square with a
spot of one pixel. The peak for the large spot vanishes, and the spetrum
is quite different from (a).
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cannot separate noisy spots of small sizes from approximate
views of large objects.

This paper presents a novel concept “morphological
multiresolution pattern spectrum (MPS)” which separates
noisy spots of small areas from approximate information of
larger figures. MPS introduces the morphological closing
operation to the decomposition process of the conventional
PS. The closing is the complement of opening: it fills up
spots smaller than SE in objects in images. Just before
applying the opening by the SE of size n to calculate the
contribution to size n, the closing with the same SE is
applied to fill up spots of size n. The clos-opened image
generated by this process of size n is used for the process of
size n+1, i.e. MPS is calculated recursively. On the step
when the contribution to a size is calculated, black spots
smaller than the size have been removed by the preceding
closings. Thus MPS can extract approximate views of
figures, and can separate smaller spots from larger figures.

The outline of the mathematical morphological
operations and the definition of PS and MPS are explained in
Sect. 2. In Sect. 3, examples on a set of typical figures and on
a real image are shown. The concluding and future remarks
are explained in Sect. 4.

2. Morphological Multiresolution Pattern Spectrum

A. Mathematical Morphological Operations

We first show some basic and important morphological
operations [6]. We assume binary images for discussions in
this paper. Images are regarded as sets whose elements are
the coordinates of the pixels contained by the objects in the
image. Here the structuring element is introduced: this is
also a set of coordinates and is compared to the window of
image processing filters. The most basic morphological
operations, erosion and dilation, of image X by the
structuring element B are defined as follows:

%
erosion. X © B,
v ()
dilation. X ® B,

v . . . .
where B denotes the inversion of B against the origin,

defined as follows:

Xz:{-blbe B}, 2)

and, © and @ are called the Minkowski set subtraction and
addition, respectively, defined as follows:

X © B=N\X,,
beB

X®B=UX,,
beB

3)

1663

original image

structuring
element

(a) erosion (b) dilation

¥ dilation
(c) opening

*erosion

(d) closing

Fig. 2 Basic morphological operations. (a) erosion, (b) dilation, (c)
opening, and (d) closing.

where X, denotes the translation of X by the vector b, defined
as follows:

Xp={x+blxe X}. 4)

Applied to an image, the erosion shrinks the objects and
eliminates fragments smaller than the SE, and the dilation
expands the objects by the size of the SE and fills up black
spots smaller than the SE. Here the term “smaller than the
SE” means “completely included by the SE.”

The opening and closing are combinations of the
erosion and dilation, and are the most important basic
operations, defined as follows:

opening. X B=[X S} 1\1/?] @B
v : (5)
closing: XB=(X® B) OB

Figure 2 illustrates the effect of these four operations.
The opening shrinks objects and eliminates portion of
objects smaller than SE by the erosion, and then the
following dilation restores shrunk objects. The portion
larger than the SE is not completely eliminated by the
preceding erosion and then restored by the following
dilation. However, the portion smailer than SE is completely
eliminated by the erosion and never restored by the dilation.
Thus the opening eliminates portion smaller than SE while
preserving other portion of the objects. The closing is the
complement: it fills up smaller spots while preserving the
other portion of the background. This ability of opening and
closing to quantify the size distribution of objects are
important for defining PS and MPS.
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B. Pattern spectrum and multiresolution pattern spectrum
The pattern spectrum (PS) of size r by an SE is defined as the
area of white pixels which are contained by the images
opened by the similarly magnified sets of SEs of both size n
and size n+1. Let nB be the similar magnification of a
structuring element B of size n, defined as follows:

nB= B®B®..®B n>0,

~————
n-1times of ®
0B=1{0}. ©)

Then the PS of image X by a structuring element B for size n,
denoted as PS(X, B, n) is defined as follows:

PS(X, B, m)=A(X,,5-X s+ 1)8) @

where A(Y) is the cardinality of the set Y (i.e. area of objects
in Y, or the number of white pixels in the image Y), and X-Y
denotes the set difference, defined as follows:

X-Y={dlac X and ae Y}. (8)
Since the opening operation removes the portion smaller
than the SE, the difference of images opened by the SEs of
size n and n+1 contains the portion whose size is exactly .

The multiresolution pattern spectrum (MPS) is defined
by introducing the closing processes into the definition of the
conventional pattern spectrum. At first we define MPS for

n=>0. MPS of size 0 by the structuring element B is defined as
follows:

MPS(X, B, 0)=A(X-X;) ()]

i.e. the same as PS(X, B, 0). The MPS for size n>0 is defined
as follows:

MPS(X, B, m)=A((OC(X, B, n)) 5

{OCX, B, ) 41)8) (10)
where OC(X, B, n) is defined recursively, as follows:
OC(X, B, n)=((OC(X, B, n-1)),.1,5)"" n>1,
OC(X, B, N=x?, (D

OC(X, B, 0)=X.

PS and MPS for n<0 are defined by interchanging the
opening and the closing in the above definitions for size Inl.
Note that there are two definitions for size n=0: one using the
definition for 720 is denoted MPS(X, B, +0) and the other,
using the definition for n<0, is denoted MPS(X, B, -0). These
two are different: MPS(X, B, +0) is the area eliminated by the
opening of size 1, and MPS(X, B, -0) is the area filled by the
closing of size 1.

When MPS of size n=>0 is calculated, a black spot
smaller than size n within an object has been filled up by the
closing operation of size n, and no longer exist in the image
OC(X, B, n). Thus the portion of size n is extracted by
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opening operations without any influences of noisy spots
smaller than n. Note that MPS is obviously not anti-
extensive.

The image (OC(X, B, n)) , . which is the cumulatively
clos-opened image by the SEs of size 0, 1, 2, ..., n, indicates
approximate views of the original images which do not
contain fragments smaller than the SE of size n. The size n is
regarded as the degree of approximation, and as a kind of
generalization of the term “resolution.” The process of the
calculation of MPS is extraction of the spectra from the
images of reduced “generalized resolution.” This is the
reason to call MPS “morphological multiresolution.”

3. Examples

Firstly we show examples of PS and MPS for some typical
figures. In this example SE of size 1 is 3x3-pixel square, and
spectra for only positive sizes are calculated. Figure 3(a)
shows a complete square of 13x13 pixels. The spectra by PS
and MPS are the same in this case, as shown in Table 1(a): A

Fig. 3 Examples of typical figures. (a) square of 13x13 pixels. (b)
square with one-pixel spot. (¢) square with 3x3-pixel spot.

Table 1 Spectral values by PS and MPS.
(a) complete square
size| 0 | 1 21345 6 |7

PS|{ 0|0 0] 0|0/ 0169 0
MPS 0 | O[O | O | O O 169

(b) square with a spot of one pixel
size| 0 | 1 2|3 |45 6 | 7
PS, 0|0 |77/91|0] 010
MPS | 0O} OO0 0] 0] 01169 O

(c) square with a spot of 3x3 pixels
size| 0 11| 2|3 |4]|5]6]|7
PS1 0 (12|148) 0| 0] 0] 0| O

MPS| 0 (12| 0| O] O | O 169
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MPS(O =
A((OC(0))g- (OC(0)) )
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Fig. 4 Example of MPS and PS on a real image.

peak appears at size 6. Figure 3(b) shows the square with a
spot of one pixel, and the spectra are shown in Table 1(b). In
PS peaks appear only at sizes 2 and 3, and the peak at size 6
does not appear. On the other hand, MPS still extracts the
peak for whole rectangle. Figure 3(c) shows the square with
a spot of 3x3 pixels, and the spectra are shown in Table 1(c).
In this case, the MPS extracts the narrow part above the spot
in the square as well as the whole square, since the size of
this part is as small as the size of the spot.

Secondly, we show an example on a real image while

displaying intermediate images during the processes to
calculate the conventional PS and the MPS. The process for
the PS is shown on the right side in Fig. 4, and the MPS on
the left side. In this figure OC(X, B, n), PS(X, B, n), MPS(X,
B, n), are abbreviated to OC(n), PS(n), and MPS(n),
respectively. Note that the actual spectral values of MPS and
PS for each size are the areas of the white region in each
image denoted as MPS() and PS(), respectively. The
structuring element B and its magnified images are shown in
the central column of Fig. 4.
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In the process to calculate the PS, a small spot in the
cat’s eye is preserved for all n, and it is found in X, that the
whole eye is about to be decomposed from around the spot.
Thus, the influence of the spot is still found in PS(2). This
influence will not disappear for larger sizes, and it is not
possible to extract approximate shape of the whole eye. On
the contrary, in the process to calculate the MPS, the
influence of the hole does not appear in MPSs for the sizes
larger than 1, because of the effect of closings. Thus the
shape of the cat’s eye itself can be extracted though the
figure has a spot. It is also observed that the images (OC(X,
B, n)) ,,n=0,1,2,.. form a sequence of “morphological
multiresolution” images according to the extent of the SEs.

4. Concluding Remarks

Here we have shown the concept of MPS. MPS can extract
approximate information of shape of figures in an image and
distinguish it from the influence of small spots. If the spots
are regarded to be caused by noise, the original image is
separated from the effect of noise. It suggests that MPS is
applicable to the design of nonlinear filters as the Fourier
spectrum is applied to the linear ones. The design of
nonlinear filters are very difficult problem and recently the
applications of the learning methods have attracted much
attention [7], [8]. However, the learning optimization
method always requires an ideal image and it causes the
problem whether the optimized filter can be applied for the
other noisy images. MPS can achieve an unsupervised
learning method using the criterion that the portion of small
sizes are regarded as noises and should be eliminated, like
“low-pass” filtering in the frequency analysis. We are now
working on this.
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