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SUMMARY It is proposed a novel method that optimizes
nonlinear filters by unsupervised learning using a novel definition of
morphological pattern spectrum, called “morphological opening/
closing spectrum (MOCS).” The MOCS can separate smaller portions
of image objects from approximate shapes even if the shapes are
degraded by noisy pixels. Our optimization method analogizes the
linear low-pass filtering and Fourier spectrum: filter parameters are
adjusted to reduce the portions of smaller sizes in MOCS, since they
are regarded as the contributions of noises like high-frequency
components. This method has an advantage that it uses only target
noisy images and requires no example of ideal outputs. Experimental
results of applications of this method to optimization of morphological
open-closing filter for binary images are presented.
key words:  mathematical morphology, pattern spectrum,
nonlinear filter, filter optimization, learning, genetic algorithm

1. Introduction

The nonlinear filters have attracted much attention in the
field of image processing, since they have been found to
remove nonlinear corruptions on images while preserving
image details. However, because of their nonlinearity, it is
still difficult to optimally design the nonlinear filters, i.e. to
find optimal parameters of the filter in each situation.
Recently, the optimization methods by supervised learning
have been developed [1]-[5] in which the filter parameters
are adjusted by some iterative procedures to reduce the error
between the output of an example noisy image and its ideal
output. However, the effectiveness of the optimized filter by
these methods is not guaranteed for images other than the
examples used for the optimization.

The linear filters are optimized without such learning
procedures under general criteria based on the Fourier
spectrum. In this method, the filter is adjusted to get a
desired spectrum in the frequency domain. For example, the
noise suppressing filter is optimized to pass components of
lower frequency and suppress higher ones. If there exists the
nonlinear counterpart of the Fourier spectrum, some
nonlinear filters can be designed not by learning procedures
using example images but by a general method that is
independent on the examples. The pattern spectrum (PS) [6]
seems to be a counterpart based on the mathematical
morphology [7], [8], which is a general class of the shift-

invariant nonlinear image transformation. Like the Fourier
transformation decomposes an image to the contributions to
the spatial frequencies, PS decomposes an image to the
contributions to “sizes.” Here the size is defined as how
large area an image object occupies in the view of an image.
In other words, PS expresses how large and how many
objects are needed to decompose an image to an object of
basic shape and similar figures of this object. The
morphological spectra, as well as PS or size distribution,
have been recently popularly investigated [9]-[13].

The morphological filter family, including the rank-
order filters, removes impulsive noises quite efficiently,
since it removes objects of small sizes by regarding them as
noises regardless of the pixel values. Examining spectrum of
an image from the size’s point of view seem to be useful to
analyze and design such filters. From the analogy between
the Fourier spectrum and PS, it is natural to reach an idea to
apply PS to the optimization of the morphological filters. In
case of noise removal, the filter should be supposed to be
optimized to suppress portion of smaller sizes on PS, since
the portion of smaller sizes may be considered as the
contributions of noises.

However, this approach using the conventional PS is
not possible to realize for the following reason. The
conventional PS is based on opening, which is one of the
basic operations of the mathematical morphology and which
removes portions smaller than a structuring element (SE), an
object of a basic shape. The spectral value of PS for size n
with an SE is defined as the area which is preserved by the
opening by the SE of size n but eliminated by the opening by
the SE of size n+1. Here the SE of size n is defined as the n-
times magnified image of the SE of size 1. Since the opening
never fills up any area of the background, the image opened
by the SE of size n+1 is always included by that opened by
the SE of size n (this property is called antiextensivity [14] ).
Now suppose a white square on the black background and
the same square with one pixel replaced by black one, as
shown in Figs. 1(a) and (b). The black spot in the latter
square is preserved during the process to calculate the
conventional PS with a square SE because of the
antiextensivity of the opening, as shown in Figs. 1(c) and
(d). In these figures, the horizontal axis indicates the size and
the vertical one indicates the contribution (i.e. area or
number of pixels) to each size. The information that the
latter square can approximately be regarded as one large
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square is never extracted by the conventional PS. This
suggests that a small modification on an image (the
replacement of a white pixel with a black one in this case)
causes a quite different spectrum, and the information about
approximate views of the image is never extracted by the
conventional PS. Consequently, the conventional PS could
not separate the contributions of noises from the original
figure. The design of linear filters using the Fourier
spectrum determines the parameters such as cutoff
frequencies in accordance with the idea that the
contributions of signals and noises are separated on the axis
of the frequency. The design of the morphological filter
family in the same way using the conventional PS is,
however, impossible because the conventional PS cannot
separate small black areas, regarded as noisy pixels, from
larger figures.

We recently proposed a new concept called
“morphological opening/closing spectrum (MOCS)” † [15],
[16] to separate noises from larger figures. The MOCS
introduces the morphological closing process to the
conventional PS. When the contribution to a size is
calculated on the process of MOCS, black areas smaller than
the size have already been filled up by the closing
operations. Thus MOCS can extract the approximate views
of large figures while avoiding the influence of small black
areas in the figure. Consequently, MOCS can separate the
area of noisy pixels from the large meaningful figures; thus
MOCS is applicable to the filter optimization method based
on the concept that the smaller-size portions on MOCS
should be suppressed by the noise removal, like the higher
components in the Fourier spectrum.

In this paper, we propose a novel optimization method

of nonlinear filters by unsupervised learning using MOCS.
The basic scheme of our method is an iterative procedure: a
filter with a set of parameters is applied to a target noisy
image to calculate MOCS of the filter output. Then the
parameter is modified so that the modified filter is applied to
the target image again for the MOCS calculation. If the
smaller portion of the latter MOCS is suppressed better than
that of the former, this modification should be accepted. In
our method, these are iterated until the optimized filter is
obtained. We apply the genetic algorithm [17], [18] to the
method since it performs the procedure quite effectively.
Our method realizes the optimization of the filter using only
the target noisy image, and not using any example of ideal
images.

This method is applicable to optimization of any filters,
including non-morphological filters, since the procedures of
this method are not related to any typical filtering algorithm.
It can also be applied to the optimization of the weighted
median filter by modifying the weighted coefficients
following to the spectral values of MOCS. In this paper we
apply our method to the optimization of morphological
open-closing filters for binary images, because of the
limitation of computational efficiency. We restrict ourselves
to the case of binary images in the following of this paper.

In Sect. 2, we give a brief introduction to the
mathematical morphological operations and explain the
concept of PS and MOCS. Our novel optimization method
using MOCS and the genetic algorithm is explained in Sect.
3.  The experimental  resul ts  of  opt imizat ion of
morphological filters for binary images are shown in Sect. 4.
Finally we conclude this work in Sect. 5.

2. Morphological Opening / Closing Spectrum
(MOCS)

2.1 Mathematical Morphological Operations

We first show some basic and important morphological
operations. We assume binary images for discussions in this
paper. Images are regarded as sets whose elements are the
coordinates of the pixels contained by the objects in the
image. Here a structuring element is introduced: this is also a
set of coordinates and is compared to the window of image
processing filters. The most basic morphological operations,
erosion and dilation, of image X by the structuring element B
are defined as follows:

  

erosion:

dilation:

X B

X B

� ,

,

∨

∨
⊕






(1)

where B
∨

 denotes the inversion of B against the origin,
defined as follows:

† In Refs.  [15],  [16],  this  method is  referred as
“multiresolution pattern spectrum.” It has been renamed since
the term “multiresolution” is confusing as if this method were
related to the multiresolution analysis using the wavelet
transform.

Fig. 1 A defect of the conventional PS. (a) spectrum for a complete
square (white on black background). (b) spectrum for a square with a
spot of one pixel. The peak for the large spot vanishes, and the
spectrum is quite different from (a).
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and, �  and ⊕  are called the Minkowski set subtraction and
addition, respectively, defined as follows:
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where X
b
 denotes the translation of X by the vector b, defined

as follows:

Xb = x+b | x ∈∈ X . (4)

Applied to an image, the erosion shrinks the objects and
eliminates fragments smaller than the SE, and the dilation
expands the objects by the size of the SE and  fills up black
spots smaller than the SE. Here the term “smaller than the
SE” means “completely included by the SE.”

Opening and closing are the combinations of the
erosion and dilation, and are the most important basic
operations, defined as follows:

  

opening:

closing:

X X B B

X X B B

B

B

= ( ) ⊕

= ⊕( )






∨

∨
�

�

. (5)

Figure 2 illustrates the effect of these four operations.
The opening shrinks the objects and eliminates the portion of
the objects smaller than the SE by the erosion, and then the
following dilation restores the shrunk objects. The portion
larger than the SE is not completely eliminated by the
preceding erosion and then restored by the following
dilation. However, the portion smaller than the SE is

completely eliminated by the erosion and never restored by
the dilation. Thus, the opening eliminates the portion smaller
than the SE while preserving the other portion of the objects.
The closing is the complement: it fills up smaller spots while
preserving the other portion of the background. This ability
of the opening and closing to quantify the size distribution of
objects is important for defining PS and MOCS.

2.2 Pattern Spectrum and Morphological Opening/
Closing Spectrum

The pattern spectrum (PS) of size n by an SE is defined as
the area of white pixels which are contained by an image
opened by the similarly magnified sets of SE of size n but
not contained by the image opened by SE of size n+1. Let nB
be the similar magnification of a structuring element B of
size n, defined as follows:

nB= B⊕ B⊕ ...⊕ B

n–1 times

n>0,

0B={0}.
(6)

Then the PS of size n by the structuring element B for image
X, denoted as PS(X, B, n), is defined as follows:

PS(X, B, n) = A XnB – X(n+1)B (7)

where A(Y) is the cardinality of the set Y (i.e. the area of
objects in Y, or the number of white pixels in the image Y),
and X–Y denotes the set difference, defined as follows:

X – Y= a | a∈ X and a∉ Y . (8)

Since the opening operation removes the portion smaller
than the SE, the difference of the images opened by the SEs
of size n and size n+1 contains the portion whose size is
exactly n.

The morphological opening/closing spectrum (MOCS)
is defined by introducing the closing processes into the
definition of the conventional pattern spectrum. The MOCS
of size 0 by the structuring element B is defined as follows:

MOCS(X, B, 0) = A X – XB (9)

i.e. the same as PS(X, B, 0). The MOCS of size n>0 is
defined as follows:

MOCS(X, B, n) = A OC(X, B, n)
nB

– OC(X, B, n)
(n+1)B

(10)
where OC(X, B, n) is defined recursively as follows:

OC(X, B, n) = OC(X, B, n – 1) (n – 1)B
nB n>1,

OC(X, B, 1) = X B,
OC(X, B, 0) = X. (11)

PS and MOCS of n≤0 are defined by interchanging
opening and closing in the above definitions for size |n|. This

Fig. 2 Basic morphological operations. (a) erosion, (b) dilation, (c)
opening, and (d) closing.
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peak for whole square. The influence of the spot in the
square appears in spectral values of MOCS for negative
sizes. Figure 3(c) shows the square with a spot of 3×3 pixels,
and the spectra are shown in Table 1(c). In this case, the
MOCS extracts the narrow part above the spot in the square
as well as the whole square, since the size of this part is as
small as the size of the spot.

3. Unsupervised Filter Optimization Using MOCS and
Genetic Algorithm

3.1 Strategy of Optimization

The strategy of the unsupervised optimization by MOCS is
reducing the spectral values of MOCS of the target noisy
image for small sizes since these are regarded as the
contributions of noises, and preserving the values for larger
sizes since these are regarded as the contributions of
meaningful figures. The method is schematically illustrated
in Fig. 4. Suppose that the MOCS of target noisy image is
such distribution as shown in Fig. 4(a), where the axes are
similar to Figs. 1(c) and (d). We generate a distribution as
shown in Fig. 4(b). This is similar to the distribution in Fig.
4(a) but spectral portions of small sizes are suppressed. This
distribution is considered as the spectrum of ideally filtered
image. An initial filter with a certain set of parameters is
generated first, and then it is applied to the noisy image. The
optimization process calculates the error between the MOCS
of the output by the initial filter (Fig. 4(c)) and the ideal
MOCS shown in Fig. 4(b). Then the filter optimization
process modifies the parameters of the filter to reduce the
error and finally obtains the ideal set of parameters.

The filter optimization process iterates the above two
procedures — the evaluation of the error and the

(c) square with a spot of 3×3 pixels

ezis 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+

SP 0 21 841 0 0 0 0 0

SCOM 0 21 0 0 0 0 961 0

Fig. 3 Examples of typical figures. (a) square of 13×13 pixels. (b)
square with one-pixel spot. (c) square with 3×3-pixel spot.

Table 1 Spectral values of Fig. 3 by PS and MOCS for positive
sizes.

(a) complete square

ezis 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+

SP 0 0 0 0 0 0 961 0

SCOM 0 0 0 0 0 0 961 0

(b) square with a spot of one pixel

ezis 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+

SP 0 0 77 19 0 0 0 0

SCOM 0 0 0 0 0 0 961 0

means that MOCS for positive sizes and MOCS for negative
sizes are dual operations: MOCS for negative sizes extracts
black objects in the white background. Note that there are
two definitions for size n=0: one using the definition for n≥0
is denoted as MOCS(X, B, +0) and the other, using the
definition for n≤0, is denoted as MOCS(X, B, –0). These two
are different: MOCS(X, B, +0) is the area eliminated by the
opening of size 1, and MOCS(X, B, –0) is the area filled by
the closing of size 1.

When MOCS of size n≥0 is calculated, a black spot
smaller than size n within an object has already been filled
up by the closing operation of size n, and no longer exists in
the image OC(X, B, n). Thus, the portion of size n is
extracted by the opening operations without any influences
of noisy spots smaller than n. This idea is similar to the
concept of alternative sequential filter (ASF). A novel image
pyramid based on ASF has been investigated [19]. Note that
MOCS is obviously not anti-extensive.

We show examples of PS and MOCS for some typical
figures. In this example SE of size 1 is 3×3-pixel square and
spectra for only positive sizes are calculated. Figure 3(a)
shows a complete square of 13×13 pixels. The spectra by PS
and MOCS are the same in this case, as shown in Table 1(a):
a peak appears at size 6. Figure 3(b) shows the square with a
spot of one pixel and the spectra are shown in Table 1(b). In
PS peaks appear only at size 2 and 3, and the peak at size 6
does not appear. On the other hand, MOCS still extracts the

(a) (b) (c)

Fig. 4 Concept of filter optimization using MOCS.
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modification of the filter parameters — until the error is
reduced sufficiently small. To realize this process, we
require a method that modifies the parameters randomly and
slightly, and that chooses the modifications leading the error
to the minimum. The simulated annealing and the genetic
algorithm are available techniques for this purpose. We
apply the genetic algorithm and describe in the next
subsection how we adopt it to our method.

It is a problem what structuring elements should be
used for the evaluation of MOCS. If the objective of the
filter design is to preserve a specific shape, the structuring
element of this shape should be chosen. In general cases, it is
better to calculate MOCSs with the structuring elements of
several typical shapes and evaluate the summation of errors
for each structuring element.

3.2 Adaptation of Genetic Algorithm

In this paper we apply the genetic algorithm to our
optimization algorithm. Application of the genetic algorithm
to the filter optimization has been already reported [17]. The
method in [17] is based on supervised learning that requires
an example of ideal output of the target filter. Our method is,
however, unsupervised learning method that requires no
example of ideal output. We explain in this subsection how
the genetic algorithm is adopted.

Step 1. Encoding filter parameters to genes
The genetic algorithm encodes one parameter set to an
individual which has one or several genes. Each gene is a
sequence of 0 / 1 - bits and is assigned for one filter window
or structuring element. In case of our experiment described
in the next chapter, since we optimize the SE-shapes of the
morphological filter, we assign 1 if the pixel at a relative
position from the origin of the SE constitutes in the SE, and
assign 0 otherwise, as shown in Fig. 5(a). When the filter has
several SEs, an individual has several genes as shown in Fig.
5(b).

Step 2. Initial evaluation of genes
We initially generate a set of individuals. The number of
individuals is denoted as P

num
. Then we evaluate each

individual by MOCS. Formally explaining, we calculate the
error function E(X, B, I) by the following:

E(X,B,I) =

Wn MOCS I(X,B,n) – MOCS id(Nnoise)(X,B,n) ,Σ
n = –Nmax

Nmax

(12)

where N
max

 is the maximum size at which MOCS is

calculated, MOCS
I
(X, B, n) is the spectral value of size n

using the SE B for the target image X filtered by the
individual I, and W

n
 is the weight for each n. MOCS id(Nnoise)

is the identical MOCS, denoted as follows:

MOCSid(Nnoise)
(X,B,n)

   = 
0 if –Nnoise ≤ n ≤ Nnoise,

MOCS(X,B,n) otherwise,
(13)

where MOCS(X, B, n) is the spectral value of size n using the
SE B for the target image X itself, as defined in Sect. 2, and
N

noise
 is the parameter determining how small-size portion

should be regarded as noisy pixels.

Step 3. Modifications of genes
The individuals are modified by genetic operations. In our
method, “selection,” “crossover,” and “mutation” are
applied in this order.
i) Selection — This “selection” operation makes a sequence
of the individuals in order of increasing error. Then it selects
a certain number of high-ranking individuals from the
sequence. The residual individuals are eliminated. The ratio
of the number of selected individuals to P

num
 is denoted as

S
rate

.
ii) Crossover — The “crossover” reproduces a new
individual whose genes are created by a mixture of those
existing in the two individuals called “parents,” which are
chosen randomly from the individuals selected in the
previous step. We apply the method of uniform crossover.
As shown in Fig. 6, the value at each position of the new
gene is chosen from the value at the corresponding position
of either of two parents at an equal probability. In this stage
P

num
(1–S

rate
) individuals are generated to compensate those

eliminated in the previous step.
iii) Mutation — The “mutation” flips some bits of a gene
randomly at a certain probability. We apply the mutation
only to the individuals which are compensated in the
previous step. The probability of flipping each bit is denoted
as M

rate
.

0 1 1 1 1 1 0 1 0

1 1 0 1 0 0 0 0 1
0 0 1 1 1 1 1 1 1

SE(s) gene(s)

(a)

(b)

×

× ×

Fig. 5 Configuration of a gene. The symbol × in each SE indicates
the origin, and squares surrounded by thick lines indicate pixels
contained by SEs. (a) In the case where the filter has only one SE. (b)
In the case where the filter has two SEs.
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Step 4. Final evaluation
Each individual compensated in the previous step is
evaluated by the same procedure as the step 2. If smallest
error produced by the individuals of the set is sufficiently
small, we treat this individual as the result of our method.
Otherwise, step 3 is applied again for the evaluation. In our
experiment, these steps are repeated  certain times, denoted
by G

max
, and finally the smallest error of the individuals is

chosen as the result of our method, for simplicity.

4. Experimental Results

We optimize the binary morphological open-closing (OC)
filter [20] with three SEs of 3×3 pixels. The OC filter applies
the opening by each SE independently to the target image,
generates an temporary image by pixelwise OR of the
opened images, applies the closing by the same SEs to the
temporary image, and then generates the final output by
pixelwise AND of the closed images. The optimization
algorithm modifies the shape of each SE within the square of
3×3 pixels. In step 2 and 4 of the previous section, we
calculate the sum of each errors calculated by Eq. (12) using
B as each of six SEs as shown in Fig. 7. Note that these six
SEs are not related to the SEs of the OC filters to be
optimized: the optimization algorithm is not dependent on
the filtering algorithms to be optimized.

Figure 8 demonstrates the effectiveness of our method.
Figure 8(a) is the target noisy binary image, which is a
symbolic figure of 30×30 pixels and is corrupted by the salt-
and-pepper noise of probability 15%. Figure 8(b) shows the
output of the OC filter with one full-square SE of 3×3 pixels
and no AND or OR operation. This filter is the most
effective for noise removal in the class of OC filters with SE
of 3×3 pixels. The output shows that this unoptimized OC
filter removes noisy pixels effectively but loses details of the
object. Figure 8(c) shows the output of the resultant filter by
our optimization method. The parameters are the followings:
P

num
 = 50, G

max
 = 20, S

rate
 = 40, M

rate
 = 0.02, N

max
 = 8, N

noise
 =

1, W
0
 = 20, W

1
 = 10, W

2
 = 5, and W

3
 = ... = W

8
 = 1. The

resultant filter by our method yields better output than the
unoptimized one. The number shown on each figure
indicates the ratio of pixels whose values are different from
the pixels of corresponding positions in the original
noiseless image, shown in Fig. 8(d). Note that this image is
unknown in real cases, and is used only for reference in this
experiment.

Another example is shown in Fig. 9. Figure 9(a) shows
the target image, which is the character “E” of 30×30 binary

parent A: 0 1 1 0 0 1 0 1 1 1

child: 1 0 1 0 1 1 0 1 1 0

parent B: 1 0 1 1 1 0 0 1 0 0

Fig. 6 Uniform crossover. The child is produced by combining
randomly selected elements of the parents (underlined ones).

RHOMBUSSQUARE

LINE000 LINE045 LINE090 LINE135

××××

× ×

Fig. 7 Structuring elements used in the optimization process of our
experiments. The symbol × and squares surrounded by thick lines are
the same as Fig. 5.

(c) 1.22%

(b) 3.00%

(d)

(a) 6.89%

Fig. 8 Experimental results. (a) target noisy image. (b) output of
unoptimized OC filter. (c) output of the OC filter optimized by our
method. (d) original noiseless image (for reference). The number on
each image indicates the ratio of pixels that are different from the pixel
at corresponding position of the reference image (d) .

(c) 3.67%

(b) 4.11%

(d)

(a) 8.00%

Fig. 9 Experimental results. (a) target noisy image. (b) output of
unoptimized OC filter. (c) output of the OC filter optimized using
“LINE000” and “LINE090” only. (d) original noiseless image (for
reference). The number on each image is similar to Fig. 8.

pixels and is corrupted by the salt-and-pepper noise of
probability 15%. Figure 9(b) shows the output of the OC
filter with a full-square SE of 3×3 pixels. Although it
removes noisy pixels well, it scrapes many parts off the
character and completely cuts the highest beam of the
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method for binary images. The MOCS has been proposed as
a key to solve the problem “HOW the nonlinear filters
work?” which has been pursued for long years. Further
theoretical works on this topic should be our future problem.
The extension of the MOCS and the optimization method to
larger and grayscale images and to other filters will also be
interesting works.
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