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Multiprimitive Texture Analysis Using Cluster Analysis

and Morphological Size Distribution

Akira ASANO†a), Regular Member, Junichi ENDO†∗, and Chie MURAKI††, Nonmembers

SUMMARY A novel method for the primitive description of
the multiprimitive texture is proposed. This method segments a
texture by the watershed algorithm into fragments each of which
contains one grain. The similar fragments are grouped by the
cluster analysis in the feature space whose basis is the morpho-
logical size density. Each primitive is extracted as the grain of
the central fragment in each cluster.
key words: texture analysis, cluster analysis, size distribution,

mathematical morphology

1. Introduction

According to [1], the texture characterization ap-
proaches can be divided into four categories: statis-
tical, geometrical, model-based and signal processing.
We have recently investigated several approaches that
are categorized into geometrical ones [2], [3]. The geo-
metrical approach considers a model that the texture
is an arrangement of grains derived from a primitive,
and estimates the shape of the primitive. We applied
the concept of morphological size distribution [4], [5]
to the primitive description. We assumed a model of
the size density function of a texture. For example, if
it is assumed that the target texture contains grains
whose shapes are homothetic to a primitive and whose
sizes are uniformly distributed, the size density func-
tion relative to the structuring element whose shape
is homothetic to the primitive will be uniform. This
assumption is suitable for most of naturally composed
textures, except the textures that are repetitions of an
identical grain. We applied the simulated annealing to
find the optimal structuring element that makes the
size density function uniform.

Our method above, as well as other geometrical ap-
proaches [6], assumes that the target texture, or the tar-
get area of texture, contains grains homothetic to one
primitive. These approaches are not applicable to the
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multiprimitive texture, which is a mixture of grains cor-
responding to two or more distinctive primitives. Sand
and Dougherty [7], [8] have proposed several methods to
analyze multiprimitive textures using the granulomet-
ric moments. Their approach is, however, estimating
the mixture proportion and sizing parameters of primi-
tives with the assumption that the shapes of primitives
and their size density functions are known.

We propose in this paper a method of estimating
primitive shapes of multiprimitive textures in case that
neither the size densities, mixture proportion, nor sizing
parameters are known. This method at first segments a
texture by the watershed algorithm into the fragments
each of which contains one grain. Our prospect is that
putting similar grains into one group achieves the es-
timation of primitive by extracting the typical grain
from each group. The similarity is measured by the
distance in the feature space where the grains are ar-
ranged. However, the shape of each grain is often dis-
torted by the segmentation, since adjacent grains of-
ten overlap and the segmentation algorithm may cause
oversegmentation. To compensate such faults of the
segmentation, we apply the morphological size density
to create the feature space. The size density of each
fragment is calculated, and the fragments are located
in the feature space whose basis consists of the size den-
sity of each size. The oversegmented grains are clearly
distantly arranged in this feature space since their sizes
are significantly small. Since the shapes of the non-
oversegmented grains are often distorted, the grains
corresponding to one primitive scatter in the feature
space. However, the following cluster analysis gath-
ers neighborhood grains into a cluster in the feature
space. The grains in a cluster are considered to cor-
respond to one primitive. The number of distinctive
primitives shapes is estimated as the number of dis-
tinctive clusters, and each primitive is estimated by the
central grain of each cluster. It is possible that a clus-
ter contains grain corresponding to another primitive
because of the shape distortion. However, such faulty
grain is hardly extracted as the estimate of primitive,
since the average grain in the feature space based on
the size density is extracted.

2. Method

Our method consists of the following four steps. We
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consider textures that consist of grains. Such a texture
as a repeated pattern like woven textile is out of our
scope.

2.1 Segmentation

To segment a texture into the fragments each of which
contains one grain, we find the center of each grain at
first. The distance transformation is applied for this
purpose; The distance transformation assigns the dis-
tance from the outline to each pixel inside a white-pixel
object in a binary image. If a distance transformed ob-
ject is convex, the maximum of distance transform is
the connected set of central pixels in this object; Oth-
erwise two or more separate local maxima are found
in the object, and each of them is the center of each
convex part yielded by dividing the original object. We
apply the distance transformation to the suitably bina-
rized target texture, and pick up the local maxima of
the distance transform. We find the centers of grains
by this operation.

We draw boundaries between the fragments by the
watershed algorithm [9] using the center pixels obtained
by the distance transformation. The watershed algo-
rithm obtains the boundaries by tracking local minima
as if the water tracked the valley in terms of regarding
the distance transforms as the heights from the ground.
The boundaries segment the texture into the fragments
each of which contains one grain.

Figures 1 and 2 shows an example; Fig. 1 is the
target binary texture. We apply the distance transfor-
mation, the extraction of local maxima, and the wa-
tershed algorithm, and then obtain the boundaries as
shown in Fig. 2. Since the watershed algorithm seg-
ments an object into convex parts, overlapped grains
are divided into each grain. This segmentation, how-
ever, divides one original grain into two or more grains
in some cases. The oversegmentation problem will be
compensated by the following cluster analysis.

2.2 Size Distribution and Location of Fragments in
the Feature Space

We calculate the morphological size distribution of each
fragment using a certain structuring element. The size
density function, or the normalized size distribution, of

Fig. 1 An example texture. Fig. 2 Result of segmentation.

discrete size r for the image object X relative to the
structuring element B, denoted pX,B(r), is defined as
follows:

pX,B(r) =
A(XrB)− A(X(r+1)B)

A(X)
, (1)

where A(X) denotes the area of X, XB denotes the
morphological opening of X by B, and rB is the
r−times homothetic magnification of B, defined as fol-
lows:

rB = B⊕B⊕. . .⊕B ((r − 1)− times of ⊕). (2)

0B = {0}. (3)

The size density of size r indicates the relative
residual area that is contained in the opening XrB but
not contained in X(r+1)B.

Each fragment is located in the feature space whose
basis consists of the size density function of several
sizes. Figure 3 shows an example of the location. The
shape of structuring element is the 3×3-pixel square in
this example. The feature space is two dimensional,
where the horizontal coordinate corresponds to size
r = 0 and the vertical one corresponds to size r = 4.
Each point denoted by symbol “×” in the space corre-
sponds to each fragment.

2.3 Clustering

We apply the hierarchical clustering in our method, and
illustrate the hierarchy by a dendrogram. We at first
select the closest point pair in the feature space, and
create the initial cluster of this pair. The selected points
are arranged on the horizontal coordinate of the den-
drogram, and a vertical line is drawn upward from each
point to the height corresponding to the distance of the
points in the feature space. The two vertical line is con-
nected at the top to indicate the relationship between
the two points. The hierarchy of clusters is constructed

Fig. 3 Feature space.
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Fig. 4 Dendrogram.

by the iteration of the followings:
1) Selecting the point-point pair, point-cluster pair

or cluster-cluster pair whose distance is currently the
smallest of all the pairs. The distance of a point-cluster
pair is defined as the smallest distance between the
point outside the cluster and a point in the cluster.
The distance of a cluster-cluster pair is defined as the
smallest distance between a point in one cluster and a
point in the other cluster.

2) Creating the cluster of the selected pair. The
tree structure of the dendrogram is drawn in the same
manner as the initial cluster.

These steps are iterated until all the points are
included in one cluster. Figure 4 shows the hierarchy
of the clusters created from the example of Fig. 3.

2.4 Separation of Clusters and Estimation of Primi-
tives

Dividing the hierarchy into several clusters that are sig-
nificantly distant, we obtain the clusters each of which
contains the grains corresponding to a distinct primi-
tive. Since the dendrogram indicates the distances be-
tween the clusters as the heights on the vertical coor-
dinate, this division is equivalent to cutting the den-
drogram at a height, as shown by the dashed line in
Fig. 4. In this case we find that the texture contains
two distinct clusters, i.e. two distinct primitives. The
obtained clusters, denoted C1 and C2, correspond to
the ovals C1 and C2 shown in Fig. 3, respectively. We
find the primitive shapes by extracting the grains in
the typical fragments, each of which corresponds to the
central point of each cluster in the feature space. Fig-
ure 5 shows the estimated primitives in this case. The
fragments corresponding to the same primitive scatter
in the feature space because of the original variabil-
ity of the grains as well as the segmentation error like
the oversegmentation. However, the primitives can be
estimated since the variability is compensated by the
collection of scattering points into a cluster and each
of the typical grains, which estimate the primitives, is
located nearest to the centroid of each cluster in the
feature space.

(a) (b)

Fig. 5 Extracted primitives.

Fig. 6 An example texture. Fig. 7 Segmentation result.

Fig. 8 Feature space.

3. Preliminary Experiment

We carried out a preliminary experiment of this method
using a practical texture. Figure 6 shows an exam-
ple of a practical texture, which is already binarized.
This is a mixture of grains corresponding to two primi-
tives, the rice grain and the plastic bead. This texture
is segmented into fragments as shown in Fig. 7. It is
found that some beads are oversegmented, for example
a bead in the lower left. Figure 8 shows the feature
space, whose basis is selected manually and is the set
of size densities of size 0 and 4 relative to the 3 × 3-
pixel square structuring element. Figure 9 shows the
dendrogram, which is divided into two clusters C1 and
C2. Figure 10 shows the typical grains extracted from
the two clusters. Note that the number of beads in the
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Fig. 9 Dendrogram.

(a) (b)

Fig. 10 Extracted primitives.

texture is different from those of the fragments in the
cluster C1 and C2. This means that oversegmentation
or faulty clustering is happened in the analyzing pro-
cedure. Extracted rice grain (a) and typical bead (b),
however, successfully estimate the primitives in spite of
oversegmentation and distortion, because of the extrac-
tion of the average grain of the cluster in the feature
space based on the size density.

4. Conclusions

In this paper, a novel method of the multiprimitive tex-
ture analysis has been proposed. This method consists
of the following procedures: 1) segmenting a texture
by the watershed algorithm into the fragments each
of which contains one grain, 2) calculating the mor-
phological size density of each fragment, 3) locating
the fragments in the feature space whose basis is the
size density of each size, 4) creating distinctive clusters
of the points in the feature space, and 5) extracting
the central grain of each cluster in the feature space.
The extracted grains are considered to be estimates of
the primitives. Since the grain shape may be distorted
by the segmentation, the grains corresponding to one

primitive scatter in the feature space. The following
cluster analysis creates clusters of neighborhood frag-
ments in the feature space and each primitive is esti-
mated by the central grain in each cluster.

We have selected the sizes of the size density func-
tion for the basis of the feature space manually for ob-
taining clear cluster discrimination in our preliminary
experiment. It is an important problem how to con-
struct the basis. One idea is constructing the basis
using the size density function of all the sizes at first,
and then reducing the dimension of the feature space by
some statistical method. Considering other basis than
the morphological size density is also our future work.
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